OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 282–290

Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons

Mariusz Lejman, Viktor Shalagatskyi, Oleksandr Kovalenko, Thomas Pezeril, Vasily V. Temnov, and Pascal Ruello  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 282-290 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000282


View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrafast laser-excited hot electrons in metals can transport energy supersonically far from the region where they are initially produced. We show that this ultrafast energy transport is responsible for the emission of coherent acoustic phonons deep beneath the free surface of a weak electron–phonon coupling copper metal sample. Special attention is taken to investigate the interaction between superdiffusive hot electrons at the bi-metallic buried interface (Cu–Ti). To discuss the underlying physics and the ultrafast transient optical properties, several configurations developed in the frame of ultrafast optical pump–probe technique have been used. In particular, we have performed backward and forward detection of both coherent acoustic phonons and superdiffusive hot electrons. From an original probe wavelength dependence study of the optical detection process, we clearly establish the signature of superdiffusive hot transport within the copper film and the link with the acoustic phonon emission. A comparison with a strong electron–phonon coupling metal, like titanium, where there is no superdiffusive transport is also provided. These results and observations are important to quantify the role of superdiffusive carriers in ultrafast energy transport, which is involved in different processes in solid state physics or femtochemistry.

© 2014 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 23, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 11, 2013
Published: January 17, 2014

Citation
Mariusz Lejman, Viktor Shalagatskyi, Oleksandr Kovalenko, Thomas Pezeril, Vasily V. Temnov, and Pascal Ruello, "Ultrafast optical detection of coherent acoustic phonons emission driven by superdiffusive hot electrons," J. Opt. Soc. Am. B 31, 282-290 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-282


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. W. Aschroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  2. C. R. Crowell, W. G. Spitzer, L. E. Howarth, and E. E. LaBate, “Attenuation length measurements of hot electrons in metal films,” Phys. Rev. 127, 2006–2015 (1962). [CrossRef]
  3. S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, “Femtosecond electronic heat-transport dynamics in thin gold film,” Phys. Rev. Lett. 59, 1962–1965 (1987). [CrossRef]
  4. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron–phonon coupling constant λ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990). [CrossRef]
  5. G. L. Eesley, “Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses,” Phys. Rev. B 33, 2144–2151 (1986). [CrossRef]
  6. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron–phonon relaxation in copper,” Phys. Rev. Lett. 58, 1212–1215 (1987). [CrossRef]
  7. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987). [CrossRef]
  8. N. Del Fatti, R. Bouffanais, F. Vallee, and C. Flytzanis, “Nonequilibrium electron interactions in metal films,” Phys. Rev. Lett. 81, 922–925 (1998). [CrossRef]
  9. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallee, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000). [CrossRef]
  10. T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suarez, and W. E. Bron, “Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures,” Phys. Rev. B 48, 15488–15491 (1993). [CrossRef]
  11. V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998). [CrossRef]
  12. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994). [CrossRef]
  13. J. Hohlfeld, S.-S. Wellershoff, J. Gudde, U. Conrad, V. Juhnka, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000). [CrossRef]
  14. T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67, 205421 (2003). [CrossRef]
  15. O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994). [CrossRef]
  16. O. B. Wright and V. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995). [CrossRef]
  17. T. Pezeril, N. Chigarev, P. Ruello, S. Gougeon, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Laser acoustics with picosecond collimated shear strain beams in single crystals and polycrystalline materials,” Phys. Rev. B 73, 132301 (2006). [CrossRef]
  18. T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: experiment and theory,” Phys. Rev. B 75, 174307 (2007). [CrossRef]
  19. V. V. Temnov, “Ultrafast acousto-magneto-plasmonics,” Nat. Photonics 6, 728–736 (2012). [CrossRef]
  20. V. V. Temnov, C. Klieber, K. A. Nelson, T. Thomay, V. Knittel, A. Leitenstorfer, D. Makarov, M. Albrecht, and R. Bratschitsch, “Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons,” Nat. Commun. 4, 1468–1477 (2013). [CrossRef]
  21. H.-N. Lin, R. J. Stoner, H. J. Maris, J. M. E. Harper, J. C. Cabral, and J. H. W. Rubloff, “Nondestructive detection of titanium disilicide phase transformation by picosecond ultrasonics,” Appl. Phys. Lett. 61, 2700–2702 (1992). [CrossRef]
  22. V. Gusev and A. Karabutov, Laser Optoacoustics (AIP, 1993).
  23. A. Melnikov, I. Razdolski, T. O. Wehling, E. Th. Papaioannou, V. Roddatis, P. Fumagalli, O. Aktsipetrov, A. I. Lichtenstein, and U. Bovensiepen, “Ultrafast transport of laser-excited spin-polarized carriers in Au/Fe/MgO(001),” Phys. Rev. Lett. 107, 076601 (2011). [CrossRef]
  24. M. Battiato, K. Carva, and P. M. Oppeneer, “Investigating the contribution of superdiffusive transport to ultrafast demagnetization of ferromagnetic thin films,” Phys. Rev. Lett. 105, 027203 (2010). [CrossRef]
  25. B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fahnle, T. Roth, M. Cinchetti, and M. Aeschlimann, “Explaining the paradoxical diversity of ultrafast laser-induced demagnetization,” Nat. Mater. 9, 259–265 (2010).
  26. M. Hada, D. Zhang, A. Casandruc, R. J. D. Miller, Y. Hontani, J. Matsuo, R. E. Marvel, and R. F. Haglund, “Hot electron injection-driven phase transitions,” Phys. Rev. B 86, 134101 (2012). [CrossRef]
  27. J. W. Gadzuk, “Hot-electron femtochemistry at surfaces: on the role of multiple electron processes in desorption,” Chem. Phys. 251, 87–97 (2000). [CrossRef]
  28. P. B. Allen, “Theory of thermal relaxation of electrons in metals,” Phys. Rev. Lett. 59, 1460–1463 (1987). [CrossRef]
  29. M. Welkowsky and R. Braunstein, “Wavelength-modulated reflectivity of the noble metals,” Solid State Commun. 9, 2139–2142 (1971). [CrossRef]
  30. H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128, 1622–1629 (1962). [CrossRef]
  31. E. E. Gray, ed. American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, 1972).
  32. O. Jepsen, “Electronic structure and magnetic breakdown in titanium,” Phys. Rev. B 12, 2988–2997 (1975). [CrossRef]
  33. Y. Li, Q. Miao, A. V. Nurmikko, and H. J. Maris, “Picosecond ultrasonic measurements using an optical cavity,” J. Appl. Phys. 105, 083516 (2009). [CrossRef]
  34. O. L. Anderson, “Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single-crystal data,” in Physical Acoustics, W. P. Mason, ed. (Academic, 1965).
  35. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986). [CrossRef]
  36. B. Perrin, B. Bonello, J. C. Jeannet, and E. Romanet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. 6, 444–448 (1996).
  37. A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: possible connection with interband transitions,” Phys. Rev. Lett. 86, 2669–2672 (2001). [CrossRef]
  38. H.-N. Lin, R. J. Stoner, H. J. Maris, and J. Tauc, “Phonon attenuation and velocity measurements in transparent materials by picosecond acoustic interferometry,” J. Appl. Phys. 69, 3816–3822 (1991). [CrossRef]
  39. P. Babilotte, P. Ruello, D. Mounier, T. Pezeril, G. Vaudel, M. Edely, J.-M. Breteau, V. Gusev, and K. Blary, “Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors,” Phys. Rev. B 81, 245207 (2010). [CrossRef]
  40. E. G. Every and A. A. Maznev, “Dispersion of an acoustic pulse passing through a large-grained polycrystalline film,” J. Acoust. Soc. Am. 131, 4491–4499 (2012). [CrossRef]
  41. V. Kanchana, G. Vaitheeswaran, A. Svane, and A. Delin, “First-principles study of elastic properties of CeO2, ThO2 and PoO2,” J. Phys. 18, 9615–9624 (2006). [CrossRef]
  42. O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys. 71, 1617–1627 (1992). [CrossRef]
  43. V. Gusev, “Laser hypersonics in fundamental and applied research,” Acustica 82, S37–S45 (1996).
  44. F.-C. Chiu and C.-M. Lai, “Optical and electrical characterizations of cerium oxide thin films,” J. Phys. D 43, 075104 (2010). [CrossRef]
  45. U. Gerhardts, “Effect of uniaxial and hydrostatic strain on the optical constants and the electronic structure of copper,” Phys. Rev. 172, 651–664 (1968). [CrossRef]
  46. K. J. Manke, A. A. Maznev, C. Klieber, V. Shalagatskyi, V. V. Temnov, D. Makarov, S.-H. Baek, C.-B. Eom, and K. A. Nelson, “Detection of shorter-than-skin-depth acoustic pulses in a metal film via transient reflectivity,” Appl. Phys. Lett. 103, 173104 (2013).
  47. S. Kaltenborn, Y.-H. Zhu, and H. C. Schneider, “Wave-diffusion theory of spin transport in metals after ultrashort-pulse excitation,” Phys. Rev. B 85, 235101 (2012). [CrossRef]
  48. V. E. Gusev, “On the duration of acoustic pulses excited by subpicosecond laser action on metals,” Opt. Commun. 94, 76–78 (1992). [CrossRef]
  49. A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Fhlisch, P. M. Oppeneer, and C. Stamm, “Ultrafast spin transport as key to femtosecond demagnetization,” Nat. Mater. 12, 332–336 (2013). [CrossRef]
  50. D. Rudolf, C. La-O-Vorakiat, M. Battiato, R. Adam, J. M. Shaw, E. Turgut, P. Maldonado, S. Mathias, P. Grychtol, H. T. Nembach, T. J. Silva, M. Aeschlimann, H. C. Kapteyn, M. M. Murnane, C. M. Schneider, and P. M. Oppeneer, “Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current,” Nat. Commun. 3, 1037–1043 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited