OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 291–295

Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries

Elizabeth Ann P. Prieto, Sheryl Ann B. Vizcara, Armando S. Somintac, Arnel A. Salvador, Elmer S. Estacio, Christopher T. Que, Kohji Yamamoto, and Masahiko Tani  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 291-295 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The growth of low-temperature-grown GaAs (LTG-GaAs) on semi-insulating GaAs substrate with a 0.2 μm n-GaAs buffer demonstrated enhanced terahertz (THz) emission in reflection and transmission excitation geometries via time-domain spectroscopy. The transient photocurrent of the sample in reflection and transmission geometries resulting from ultrafast excitation yielded a 215% and 165% increase in the THz emission, respectively, as compared with a sample grown with an undoped GaAs buffer. The LTG-GaAs film with n-GaAs buffer exhibited a significant increase in its built-in field as supported by calculations and photoreflectance experiments. The enhanced THz emission intensity was comparable with bulk p-InAs.

© 2014 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: July 17, 2013
Revised Manuscript: November 29, 2013
Manuscript Accepted: December 5, 2013
Published: January 17, 2014

Elizabeth Ann P. Prieto, Sheryl Ann B. Vizcara, Armando S. Somintac, Arnel A. Salvador, Elmer S. Estacio, Christopher T. Que, Kohji Yamamoto, and Masahiko Tani, "Terahertz emission enhancement in low-temperature-grown GaAs with an n-GaAs buffer in reflection and transmission excitation geometries," J. Opt. Soc. Am. B 31, 291-295 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997). [CrossRef]
  2. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000). [CrossRef]
  3. S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996). [CrossRef]
  4. J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994). [CrossRef]
  5. D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995). [CrossRef]
  6. M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989). [CrossRef]
  7. A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990). [CrossRef]
  8. H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992). [CrossRef]
  9. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994). [CrossRef]
  10. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Will, H.-W. Hubers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16, 19695–19705 (2008). [CrossRef]
  11. M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008). [CrossRef]
  12. V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008). [CrossRef]
  13. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002). [CrossRef]
  14. H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008). [CrossRef]
  15. A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004). [CrossRef]
  16. E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011). [CrossRef]
  17. C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009). [CrossRef]
  18. M. Missous, “Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy,” Microelectron. J. 27, 393–409 (1996). [CrossRef]
  19. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 1997).
  20. D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009). [CrossRef]
  21. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).
  22. M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989). [CrossRef]
  23. Y. S. Lee, Principle of Terahertz Science and Technology (Springer Science+Business Media, 2009).
  24. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties, 3rd ed. (Springer Science+Business Media, 2005).
  25. S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited