OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 296–301

Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field

Wen Zhang, Zhongyuan Yu, Yumin Liu, and Yiwei Peng  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 296-301 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000296


View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically study the dynamics of a strongly coupled quantum dot–bimodal microcavity system under an external magnetic field, where the nondegenerate excitonic spin states caused by the Zeeman effect are coupled to both orthogonal cavity modes. We develop an effective cavity quantum electrodynamics model, demonstrate the polarization-related nonlinear response under a linearly polarized pulse excitation by calculating the time-resolved intracavity photon number, and investigate the dependence of system parameters on the nonlinearity. In addition, we show that, when driven by two pulses with perpendicular polarization and a relative time delay, the coupled system suppresses the delayed one, which can be applied to polarized optical switching at a single-photon level.

© 2014 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(230.3810) Optical devices : Magneto-optic systems
(270.5580) Quantum optics : Quantum electrodynamics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optical Devices

History
Original Manuscript: September 19, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 18, 2013
Published: January 23, 2014

Citation
Wen Zhang, Zhongyuan Yu, Yumin Liu, and Yiwei Peng, "Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field," J. Opt. Soc. Am. B 31, 296-301 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-296


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef]
  3. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  4. E. del Valle, F. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. II. Fermions,” Phys. Rev. B 79, 235326 (2009). [CrossRef]
  5. J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein, “Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system,” Nat. Mater. 9, 304–308 (2010). [CrossRef]
  6. A. Majumdar, D. Englund, M. Bajcsy, and J. Vuckovic, “Nonlinear temporal dynamics of a strongly coupled quantum-dot-cavity system,” Phys. Rev. A 85, 033802 (2012).
  7. J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system,” Nature 454, 315–318 (2008). [CrossRef]
  8. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4, 859–863 (2008). [CrossRef]
  9. A. Faraon, A. Majumdar, and J. Vuckovic, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010). [CrossRef]
  10. A. Majumdar, M. Bajcsy, and J. Vuckovic, “Probing the ladder of dressed states and nonclassical light generation in quantum-dot-cavity QED,” Phys. Rev. A 85, 041801 (2012).
  11. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6, 605–609 (2012). [CrossRef]
  12. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012). [CrossRef]
  13. E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010). [CrossRef]
  14. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, “Spontaneous two-photon emission from a single quantum dot,” Phys. Rev. Lett. 107, 233602 (2011). [CrossRef]
  15. P. Pathak and S. Hughes, “Cavity-assisted fast generation of entangled photon pairs through the biexciton–exciton cascade,” Phys. Rev. B 80, 155325 (2009).
  16. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007). [CrossRef]
  17. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16, 15006–15012 (2008). [CrossRef]
  18. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010). [CrossRef]
  19. A. Kuther, M. Bayer, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Schäfer, and J. P. Reithmaier, “Zeeman splitting of excitons and biexcitons in single In_{0.60}Ga_{0.40}As/GaAs self-assembled quantum dots,” Phys. Rev. B 58, R7508–R7511 (1998). [CrossRef]
  20. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. Reinecke, S. Walck, J. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002).
  21. S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, and A. Forchel, “Control of the strong light-matter interaction between an elongated In0.3Ga0.7 As quantum dot and a micropillar cavity using external magnetic fields,” Phys. Rev. Lett. 103, 127401 (2009). [CrossRef]
  22. H. Kim, T. C. Shen, D. Sridharan, G. S. Solomon, and E. Waks, “Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 98, 091102 (2011). [CrossRef]
  23. Q. Ren, J. Lu, H. H. Tan, S. Wu, L. Sun, W. Zhou, W. Xie, Z. Sun, Y. Zhu, C. Jagadish, S. C. Shen, and Z. Chen, “Spin-resolved Purcell effect in a quantum dot microcavity system,” Nano Lett. 12, 3455–3459 (2012). [CrossRef]
  24. H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks, “Strong coupling between two quantum dots and a photonic crystal cavity using magnetic field tuning,” Opt. Express 19, 2589–2598 (2011). [CrossRef]
  25. A. Majumdar, P. Kaer, M. Bajcsy, E. D. Kim, K. G. Lagoudakis, A. Rundquist, and J. Vučković, “Proposed coupling of an electron spin in a semiconductor quantum dot to a nanosize optical cavity,” Phys. Rev. Lett. 111, 027402 (2013). [CrossRef]
  26. S. Reitzenstein, S. Münch, P. Franeck, A. Löffler, S. Höfling, L. Worschech, A. Forchel, I. V. Ponomarev, and T. L. Reinecke, “Exciton spin state mediated photon-photon coupling in a strongly coupled quantum dot microcavity system,” Phys. Rev. B 82, 121306 (2010). [CrossRef]
  27. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006). [CrossRef]
  28. A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-Poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012).
  29. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]
  30. P. Machnikowski, “Theory of two-photon processes in quantum dots: coherent evolution and phonon-induced dephasing,” Phys. Rev. B 78, 195320 (2008). [CrossRef]
  31. E. del Valle, A. Gonzalez–Tudela, E. Cancellieri, F. P. Laussy, and C. Tejedor, “Generation of a two-photon state from a quantum dot in a microcavity,” New J. Phys. 13, 113014 (2011). [CrossRef]
  32. S. M. Tan, “A computational toolbox for quantum and atomic optics,” J. Opt. B 1, 424–432 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited