OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 302–310

Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications

J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 302-310 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper introduces the novel concept of a cross dipole nanoantenna for use in fluorescence based sensing applications. The dual-arm nature of the cross nanoantenna allows a dual resonant structure to be designed such that the shorter arm resonates with the pump wavelength and the longer arm with the emission wavelength. This is expected to further enhance emission from any fluorescent molecule that can couple to both nanoantenna arms when compared with a singly resonant structure. The paper uses the finite-difference time-domain method to first analyze the two-arm nanoantenna case and then shows how intensity enhancement depends on the antenna geometry and tapering of arms in the antenna gap. The results show that smaller gap sizes always produce larger enhancement compared with lightning rod effects due to tapering. A four-arm cross nanoantenna is then studied, highlighting differences from the two-arm case. Finally, the effect of a diagonally aligned molecule transiting the central gap region is studied. The results show that two hotspots occur on either side of the central gap region when the molecule is aligned perpendicular to the transit direction and only a single central hotspot occurs when the alignment is parallel to the transit direction.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: September 19, 2013
Manuscript Accepted: November 5, 2013
Published: January 23, 2014

J. L. Stokes, Y. Yu, Z. H. Yuan, J. R. Pugh, M. Lopez-Garcia, N. Ahmad, and M. J. Cryan, "Analysis and design of a cross dipole nanoantenna for fluorescence-sensing applications," J. Opt. Soc. Am. B 31, 302-310 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
  2. “Illumina,” www.illumina.com .
  3. “Pacific Biosciences,” www.pacificbiosciences.com .
  4. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003). [CrossRef]
  5. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981). [CrossRef]
  6. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009). [CrossRef]
  7. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004). [CrossRef]
  8. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Proc. Am. Phys. Soc. 69, 681 (1946).
  9. B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991).
  10. P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983). [CrossRef]
  11. Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  12. K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009). [CrossRef]
  13. R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957). [CrossRef]
  14. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998). [CrossRef]
  15. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010). [CrossRef]
  16. L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).
  17. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013). [CrossRef]
  18. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]
  19. L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995). [CrossRef]
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  21. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef]
  22. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999). [CrossRef]
  23. G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
  24. O. L. Muskens and J. Gómez Rivas, “Enhanced light extraction from emitters close to clusters of resonant plasmonic nanoantennas,” Mater. Sci. Eng. B 149, 216–219 (2008). [CrossRef]
  25. S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000). [CrossRef]
  26. V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).
  27. P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009). [CrossRef]
  28. E. S. Unlü, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011). [CrossRef]
  29. J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  31. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  32. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).
  33. M. Agio and M. Alu, Optical Antennas (Cambridge University, 2013).
  34. N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168–2173 (2004). [CrossRef]
  35. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002). [CrossRef]
  36. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  37. B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011). [CrossRef]
  38. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007). [CrossRef]
  39. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  40. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).
  41. S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited