OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 325–331

Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure

Yanbing Ma, Huaiwu Zhang, Yuanxun Li, and Yicheng Wang  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 325-331 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000325


View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design, characteristics, and measurements of a terahertz (THz) metamaterial absorber (MA) based on fractal Sierpinski curves. By applying the fractal structure as the top resonators array, a more compact unit cell with a size reduction of 42% and dual-frequency operation has been achieved as an advantage over the conventional square-shaped MA. In addition, due to the rotationally symmetric structure, the fractal absorber is polarization insensitive and can perform well at a wide range of incident angles. Both the effective medium theory and the multireflection interference theory have been employed to investigate the underlying physical mechanism of the proposed THz MA, and it is found that the latter theory is not applicable for explaining the absorption mechanism of our investigated structure. The THz MA was measured in the case of 30° oblique incidence under TE polarization, and two absorption peaks have been observed at 0.2 and 0.58 THz with absorptivities of 91% and 92.2%, respectively. A microwave MA based on the same Sierpinski structure has also been demonstrated to validate the performance of the fractal MA at various incident angles, and good agreements between the full-wave simulation and experimental results have been achieved.

© 2014 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 10, 2013
Manuscript Accepted: December 16, 2013
Published: January 23, 2014

Citation
Yanbing Ma, Huaiwu Zhang, Yuanxun Li, and Yicheng Wang, "Miniaturized and dual-band metamaterial absorber with fractal Sierpinski structure," J. Opt. Soc. Am. B 31, 325-331 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  2. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010). [CrossRef]
  3. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008). [CrossRef]
  4. S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012). [CrossRef]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef]
  6. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012). [CrossRef]
  7. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20, 4675–4680 (2012). [CrossRef]
  8. G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007). [CrossRef]
  9. Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008). [CrossRef]
  10. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009). [CrossRef]
  11. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011). [CrossRef]
  12. T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).
  13. Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012). [CrossRef]
  14. D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503–1510 (2012). [CrossRef]
  15. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013). [CrossRef]
  16. M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010). [CrossRef]
  17. X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013). [CrossRef]
  18. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
  19. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15, 055106 (2013). [CrossRef]
  20. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011). [CrossRef]
  21. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012). [CrossRef]
  22. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006). [CrossRef]
  23. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010). [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
  25. J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).
  26. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012). [CrossRef]
  27. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006). [CrossRef]
  28. J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21, 9691–9702 (2013). [CrossRef]
  29. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  30. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited