OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 349–354

Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19

Fabian Reichert, Daniel-Timo Marzahl, and Günter Huber  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 349-354 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000349


View Full Text Article

Enhanced HTML    Acrobat PDF (734 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the crystal growth, spectroscopic investigations, and the demonstration of visible laser operation of Pr,Mg:CaAl12O19. Crystals with dopant concentrations of 1 and 6 at. % were grown by the Czochralski method. Polarization-dependent ground-state absorption and emission spectra as well as the excited state absorption characteristics were recorded in the visible spectral region. Furthermore, the decay dynamics of the P03 manifold and the radiative lifetime were determined. By employing a 6 at. % doped Pr,Mg:CaAl12O19 crystal as gain medium and a frequency doubled optically pumped semiconductor laser as pump source, cw laser operation was realized at 644.3 and at 725.2 nm. Maximum output powers and slope efficiencies exceeded 320 mW and 25%, respectively.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.7300) Lasers and laser optics : Visible lasers
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 16, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 13, 2013
Published: January 24, 2014

Citation
Fabian Reichert, Daniel-Timo Marzahl, and Günter Huber, "Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19," J. Opt. Soc. Am. B 31, 349-354 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004). [CrossRef]
  2. S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-of-care pathology,” Opt. Lett. 37, 2430–2432 (2012). [CrossRef]
  3. U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1 watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9092 (2013). [CrossRef]
  4. F. M. J. Cozijn, J. Biesheuvel, A. S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, and J. C. J. Koelemeij, “Laser cooling of beryllium ions using a frequency-doubled 626  nm diode laser,” Opt. Lett. 38, 2370–2372 (2013). [CrossRef]
  5. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4  cw lasers: efficient laser operation at 522.6  nm, 545.9  nm, 607.2  nm, and 639.5  nm,” Opt. Lett. 36, 1002–1004 (2011). [CrossRef]
  6. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005). [CrossRef]
  7. A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993) [CrossRef]
  8. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007). [CrossRef]
  9. B. P. Sobolev, “Chemical aspects of crystal growth of multicomponent fluoride materials from the melt,” Crystallogr. Rep. 47, S63–S75 (2002). [CrossRef]
  10. Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3Al5O12,” Phys. Rev. B 49, 14827–14835 (1994). [CrossRef]
  11. M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.
  12. M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009). [CrossRef]
  13. M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011). [CrossRef]
  14. L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996). [CrossRef]
  15. F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+,Mg2+:SrAl12O19,” Opt. Lett. 37, 4889–4891 (2012). [CrossRef]
  16. F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013). [CrossRef]
  17. A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988). [CrossRef]
  18. D. A. Jerebtsov and G. G. Mikhailov, “Phase diagram of CaO-Al2O3 system,” Ceram. Int. 27, 25–28 (2001). [CrossRef]
  19. A. Richter, “Laser parameters and performance of Pr3+-doped fluorides operating in the visible spectral region,” Ph.D. thesis (Universität Hamburg, 2008).
  20. N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010). [CrossRef]
  21. J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004). [CrossRef]
  22. J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982). [CrossRef]
  23. C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995). [CrossRef]
  24. G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975). [CrossRef]
  25. F. Reichert, F. Moglia, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20, 20387–20395 (2012). [CrossRef]
  26. D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011). [CrossRef]
  27. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62, 15640–15649 (2000). [CrossRef]
  28. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64, 125117 (2001). [CrossRef]
  29. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides,” J. Lumin. 99, 283–299 (2002). [CrossRef]
  30. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited