OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 360–365

Plasmon resonance optical tuning based on photosensitive composite structures

Giovanni Gilardi, Sanshui Xiao, N. Asger Mortensen, Antonio d’Alessandro, and Romeo Beccherelli  »View Author Affiliations

JOSA B, Vol. 31, Issue 2, pp. 360-365 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam.

© 2014 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Devices

Original Manuscript: September 5, 2013
Revised Manuscript: November 26, 2013
Manuscript Accepted: December 8, 2013
Published: January 29, 2014

Giovanni Gilardi, Sanshui Xiao, N. Asger Mortensen, Antonio d’Alessandro, and Romeo Beccherelli, "Plasmon resonance optical tuning based on photosensitive composite structures," J. Opt. Soc. Am. B 31, 360-365 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).
  2. J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  3. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009). [CrossRef]
  4. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010). [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  6. N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008). [CrossRef]
  7. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17, 8542–8547 (2009). [CrossRef]
  8. G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003). [CrossRef]
  9. M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009). [CrossRef]
  10. E. M. Phizicky and S. Fields, “Protein–protein interactions: methods for detection and analysis,” Microbiol. Rev. 59, 94–123 (1995).
  11. J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008). [CrossRef]
  12. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011). [CrossRef]
  13. J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011). [CrossRef]
  14. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002). [CrossRef]
  15. G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012). [CrossRef]
  16. S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett. 36, 37–39 (2011). [CrossRef]
  17. D. C. Zografopoulos and R. Beccherelli, “A vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013). [CrossRef]
  18. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010). [CrossRef]
  19. Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011). [CrossRef]
  20. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013). [CrossRef]
  21. D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013). [CrossRef]
  22. Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).
  23. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012). [CrossRef]
  24. L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011). [CrossRef]
  25. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012). [CrossRef]
  26. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012). [CrossRef]
  27. J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004). [CrossRef]
  28. http://www.comsol.com .
  29. B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009). [CrossRef]
  30. I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
  31. L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004). [CrossRef]
  32. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011). [CrossRef]
  33. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited