OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 2 — Feb. 1, 2014
  • pp: 366–375

Approximate expressions for estimation of four-wave mixing efficiency in slow-light photonic crystal waveguides

Panagiotis Kanakis, Thomas Kamalakis, and Thomas Sphicopoulos  »View Author Affiliations


JOSA B, Vol. 31, Issue 2, pp. 366-375 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000366


View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present approximate analytical expressions for the estimation of the degenerate four-wave mixing conversion efficiency in slow-light photonic crystal waveguides (PCWs). The derived formulas incorporate the different effective modal areas and the frequency-dependent linear and nonlinear parameters of the pump, signal, and idler waves. The influence of linear loss, two-photon absorption, and free-carrier generation is also accounted for. Numerical solution of the coupled propagation equations is used to verify the validity of the proposed expressions under different values of the linear and nonlinear parameters of the waveguide. It is shown that the derived expressions provide an accurate estimation of the conversion efficiency and are thus expected to be useful in the design of PCWs for nonlinear signal-processing applications.

© 2014 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: July 16, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: December 12, 2013
Published: January 29, 2014

Citation
Panagiotis Kanakis, Thomas Kamalakis, and Thomas Sphicopoulos, "Approximate expressions for estimation of four-wave mixing efficiency in slow-light photonic crystal waveguides," J. Opt. Soc. Am. B 31, 366-375 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-2-366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Gong, J. Huang, K. Li, N. Copner, J. J. Martinez, L. Wang, T. Duan, W. Zhang, and W. H. Loh, “Spoof four wave mixing for all-optical wavelength conversion,” Opt. Express 20, 24030–24037 (2012). [CrossRef]
  2. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010). [CrossRef]
  3. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef]
  4. R. Salem, M. A. Foster, A. C. Turner, D. F. Geragthy, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007). [CrossRef]
  5. S. Rawal, R. K. Sinha, and R. M. De La Rue, “Silicon-on-insulator photonic miniature devices with slow light enhanced third-order nonlinearities,” J. Nanophoton. 6, 063504 (2012). [CrossRef]
  6. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160  Gbaud all-optical demultiplexing exploiting slow light in a engineered silicon photonic crystal waveguide,” Opt. Lett. 36, 1728–1730 (2011). [CrossRef]
  7. F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, “Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion,” Nat. Commun. 2, 296 (2011). [CrossRef]
  8. J. Li, L. O’Faolain, and T. F. Krauss, “Four-wave mixing in slow light photonic crystal waveguides with very high group index,” Opt. Express 20, 17474–17479 (2012). [CrossRef]
  9. J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012). [CrossRef]
  10. G. P. Agrawal, NonLinear Fiber Optics, 4th ed. (Academic, 2007).
  11. T. Chen, J. Sun, and L. Li, “Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides,” Opt. Express 20, 20043–20058 (2012). [CrossRef]
  12. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  13. S. Roy, M. Santagiustina, P. Colman, S. Combrie, and A. De Rossi, “Modeling the dispersion of the nonlinearity in slow mode photonic crystal waveguides,” IEEE Photon. J. 4, 224–233 (2012). [CrossRef]
  14. P. Kanakis, T. Kamalakis, and T. Sphicopoulos, “Optimization of the storage capacity of slow light photonic crystal waveguides,” Opt. Lett. 37, 4585–4587 (2012). [CrossRef]
  15. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  16. P. Kanakis, T. Kamalakis, and T. Sphicopoulos, “Numerical analysis of soliton propagation in photonic crystal slab waveguides for signal processing application,” J. Opt. Soc. Am. B 29, 2787–2796 (2012). [CrossRef]
  17. L. Yin and G. Agrawal, “Impact of two photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007). [CrossRef]
  18. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009). [CrossRef]
  19. B. Corcoran, C. Monat, D. Pudo, B. J. Eggleton, T. F. Krauss, D. J. Moss, L. O’Faolain, M. Pelusi, and T. P. White, “Nonlinear loss dynamics in a silicon slow-light photonic crystal waveguide,” Opt. Lett. 35, 1073–1075 (2010). [CrossRef]
  20. J. F. McMillan, M. Yu, D. Kwong, and C. Wong, “Observation of four-wave mixing in slow light silicon photonic crystal wavguides,” Opt. Express 18, 15484–15497 (2010). [CrossRef]
  21. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010). [CrossRef]
  22. M. Santagiustina, C. G. Someda, G. Vadala, S. Combrie, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21029 (2010). [CrossRef]
  23. K. Lengle, L. Bramerie, M. Gay, M. Costa e Silva, S. Lobo, J. Simon, P. Colman, S. Combrie, and A. de Rossi, “Investigation of FWM in dispersion-engineered GaInP photonic crystal waveguides,” Opt. Express 20, 16154–16165 (2012). [CrossRef]
  24. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express 17, 17357–17368 (2009). [CrossRef]
  25. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675–26685 (2010). [CrossRef]
  26. S. Roy, A. Willinger, S. Combrie, A. De Rossi, G. Eisenstein, and M. Santaguistina, “Narrowband optical parametric gain in slow mode engineered GaInP photonic crystal waveguides,” Opt. Lett. 37, 2919–2921 (2012). [CrossRef]
  27. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433, 725–728 (2005). [CrossRef]
  28. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express 18, 3582–3591 (2010). [CrossRef]
  29. J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” J. Comput. Appl. Math. 6, 19–26 (1980). [CrossRef]
  30. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line defect,” Opt. Express 17, 7206–7216 (2009). [CrossRef]
  31. B. Corcoran, T. D. Vo, M. D. Pelusi, C. Monat, D. Xu, A. Densmore, R. Ma, S. Janz, D. J. Moss, and B. J. Eggleton, “Silicon nanowire based radio-frequency spectrum analyzer,” Opt. Express 18, 20190–20200 (2010). [CrossRef]
  32. I. D. Rukhlenko, M. Premarante, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2010). [CrossRef]
  33. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited