OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 423–428

High-fidelity teleportation of continuous-variable quantum states with discrete-variable resources

Kevin Marshall and Daniel F. V. James  »View Author Affiliations


JOSA B, Vol. 31, Issue 3, pp. 423-428 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000423


View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The need for high-fidelity quantum teleportation arises in a variety of quantum algorithms and protocols. Unfortunately, conventional continuous-variable teleportation schemes rely on Einstein–Podolsky–Rosen states that yield a fidelity that approaches unity only in the limit of an unphysical amount of squeezing. A new method that utilizes an ensemble of single photon entangled states, qubits, to teleport continuous variable (CV) states with fidelity approaching unity with finite resources was recently proposed by Andersen and Ralph [Phys. Rev. Lett. 111, 050504 (2013)]. We extend these ideas to consider the general case of using maximally entangled d-level states, qudits, to teleport a CV state and discuss how the corresponding results are affected. In particular, we find that, by using qudits with dimension greater than two, we can achieve a higher fidelity with comparable resources.

© 2014 Optical Society of America

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: October 7, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 20, 2013
Published: February 5, 2014

Citation
Kevin Marshall and Daniel F. V. James, "High-fidelity teleportation of continuous-variable quantum states with discrete-variable resources," J. Opt. Soc. Am. B 31, 423-428 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-3-423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. M. A. Sols-Prosser, O. Jimnez, L. Neves, and A. Delgado, “Quantum teleportation via quantum channels with non-maximal Schmidt rank,” Phys. Scr. 2013, 014058 (2013). [CrossRef]
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  4. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett 80, 1121–1125 (1998). [CrossRef]
  5. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008). [CrossRef]
  6. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473–1476 (1994). [CrossRef]
  7. S. Pirandola and S. Mancini, “Quantum teleportation with continuous variables: a survey,” Laser Phys. 16, 1418–1438 (2006). [CrossRef]
  8. G. Brassard, S. L. Braunstein, and R. Cleve, “Teleportation as a quantum computation,” Phys. D 120, 43–47 (1998). [CrossRef]
  9. S. Ishizaka and T. Hiroshima, “Asymptotic teleportation scheme as a universal programmable quantum processor,” Phys. Rev. Lett. 101, 240501 (2008). [CrossRef]
  10. S. Ishizaka and T. Hiroshima, “Quantum teleportation scheme by selecting one of multiple output ports,” Phys. Rev. A 79, 042306 (2009). [CrossRef]
  11. S. Clark, B. Coecke, E. Grefenstette, S. Pulman, and M. Sadrzadeh, “A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure,” arXiv:1305.0556 (2013).
  12. U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013). [CrossRef]
  13. M. Yukawa, H. Benichi, and A. Furusawa, “High-fidelity continuous-variable quantum teleportation toward multistep quantum operations,” Phys. Rev. A 77, 022314 (2008). [CrossRef]
  14. T. Eberle, V. Händchen, and R. Schnabel, “Stable control of 10  db two-mode squeezed vacuum states of light,” Opt. Express 21, 11546–11553 (2013). [CrossRef]
  15. S. A. Babichev, J. Ries, and A. I. Lvovsky, “Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon,” Europhys. Lett. 64, 1–7 (2003). [CrossRef]
  16. S. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto, “Quantum-scissors device for optical state truncation: a proposal for practical realization,” Phys. Rev. A 64, 063818 (2001). [CrossRef]
  17. R. Cleve and J. Watrous, “Fast parallel circuits for the quantum Fourier transform,” in Proceedings 41st Annual Symposium on Foundations of Computer Science (2000), pp. 526–536.
  18. M. Takeoka, M. Sasaki, and N. Lütkenhaus, “Binary projective measurement via linear optics and photon counting,” Phys. Rev. Lett. 97, 040502 (2006). [CrossRef]
  19. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences (Cambridge University, 2000).
  20. X. L. Ye and Q. Lin, “Efficient and flexible generation of entangled qudits with cross-phase modulation,” J. Opt. Soc. Am. B 29, 1810–1814 (2012). [CrossRef]
  21. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Entanglement purification of Gaussian continuous variable quantum states,” Phys. Rev. Lett. 84, 4002–4005 (2000). [CrossRef]
  22. J. Kim, J. Lee, S.-W. Ji, H. Nha, P. M. Anisimov, and J. P. Dowling, “Coherent-state optical qudit cluster state generation and teleportation via homodyne detection,” arXiv:1012.5872 (2010).
  23. S. Strelchuk, M. Horodecki, and J. Oppenheim, “Generalized teleportation and entanglement recycling,” Phys. Rev. Lett. 110, 010505 (2013). [CrossRef]
  24. S. Beigi and R. Knig, “Simplified instantaneous non-local quantum computation with applications to position-based cryptography,” New J. Phys. 13, 093036 (2011). [CrossRef]
  25. M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Phys. Rev. A 60, 1888–1898 (1999). [CrossRef]
  26. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Physical implementation for entanglement purification of Gaussian continuous-variable quantum states,” Phys. Rev. A 62, 032304 (2000). [CrossRef]
  27. A. Miranowicz, “Optical-state truncation and teleportation of qudits by conditional eight-port interferometry,” J. Opt. B Quantum Semiclass. Opt. 7, 142–150 (2005). [CrossRef]
  28. S. M. Barnett, L. S. Phillips, and D. T. Pegg, “Imperfect photodetection as projection onto mixed states,” Opt. Commun. 158, 45–49 (1998). [CrossRef]
  29. G. Alber, A. Delgado, N. Gisin, and I. Jex, “Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces,” J. Phys. A 34, 8821–8833 (2001). [CrossRef]
  30. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett. 74, 1063–1065 (1999). [CrossRef]
  31. S. Takeda, T. Mizuta, M. Fuwa, H. Yonezawa, P. van Loock, and A. Furusawa, “Gain tuning for continuous-variable quantum teleportation of discrete-variable states,” Phys. Rev. A 88, 042327 (2013). [CrossRef]
  32. S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, and A. Furusawa, “Deterministic quantum teleportation of photonic quantum bits by a hybrid technique,” Nature 500, 315–318 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited