OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 474–477

Transmission characteristics of optical pulse in nested nonlinear microring resonators and gratings

Rangsan Jomtarak and Preecha P. Yupapin  »View Author Affiliations


JOSA B, Vol. 31, Issue 3, pp. 474-477 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000474


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the transmission behaviors of a light pulse through nested nonlinear microring resonators (NMRs) and gratings are investigated. The system design consists of two-defect gratings incorporating nested NMR and the uniform grating. In modeling, the laser pulse with wavelength centered at 1.55 μm is input into the waveguide of the NMR via the two-defect and uniform gratings. The resonant outputs from the two-defect gratings are propagated through the NMR and grating, where the delay times of pulses with different wavelengths through the system are obtained and distinguished by the output grating (uniform grating). From the obtained resonant outputs, we found that the redshifted and blueshifted (Čerenkov radiation) signals occurred and were seen. In applications, such a proposed system can be used to form two different optical trapping probes, where the trapped photons can be propagated by the modulated light pulse within the device, while the Čerenkov radiation of the trapped atoms or molecules within the system can be useful for Čerenkov radiation investigation, imaging, and sensing applications.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.2055) Nonlinear optics : Dynamic gratings
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: October 17, 2013
Revised Manuscript: December 13, 2013
Manuscript Accepted: December 30, 2013
Published: February 13, 2014

Citation
Rangsan Jomtarak and Preecha P. Yupapin, "Transmission characteristics of optical pulse in nested nonlinear microring resonators and gratings," J. Opt. Soc. Am. B 31, 474-477 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-3-474


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987). [CrossRef]
  2. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012). [CrossRef]
  3. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices,” Opt. Lett. 35, 2855–2857 (2010). [CrossRef]
  4. N. Suwanpayak, M. A. Jalil, C. Teeka, J. Ali, and P. P. Yupapin, “Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications,” Biomed. Opt. Express 2, 159–168 (2011). [CrossRef]
  5. J. Lee, J. A. Grover, L. A. Orozco, and S. L. Rolston, “Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap,” J. Opt. Soc. Am. B 30, 2869–2874 (2013). [CrossRef]
  6. H. Shen, G. Lu, T. Zhang, J. Liu, Y. He, Y. Wang, and Q. Gong, “Molecule fluorescence modified by a slit-based nanoantenna with dual gratings,” J. Opt. Soc. Am. B 30, 2420–2426 (2013). [CrossRef]
  7. J. Sakai and Y. Suzuki, “Equivalence between in-phase and antiresonant reflection conditions in Bragg fiber and its application to antiresonant reflecting optical waveguide-type fibers,” J. Opt. Soc. Am. B 28, 183–192 (2011). [CrossRef]
  8. P. Li and E. T. Yu, “Large-area omnidirectional antireflection coating on low-index materials,” J. Opt. Soc. Am. B 30, 2584–2588 (2013). [CrossRef]
  9. C. Vazquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281, 4910–4916 (2008). [CrossRef]
  10. I. Chremmos and O. Schwelb, “Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector,” Opt. Commun. 282, 3712–3719 (2009). [CrossRef]
  11. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012). [CrossRef]
  12. Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012). [CrossRef]
  13. Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009). [CrossRef]
  14. L. G. Yang, C. H. Yeh, C. Y. Wong, C. W. Chow, F. G. Tseng, and H. K. Tsang, “Stable and wavelength-tunable silicon-microring-resonator based erbium-doped fiber laser,” Opt. Express 21, 2869–2874 (2013). [CrossRef]
  15. X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009). [CrossRef]
  16. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000). [CrossRef]
  17. C. R. Philips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phase matching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013). [CrossRef]
  18. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013). [CrossRef]
  19. C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003). [CrossRef]
  20. J. J. Saarinen and J. E. Sipe, “A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13–32 (2008). [CrossRef]
  21. G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012). [CrossRef]
  22. G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012). [CrossRef]
  23. P. Kaspar, R. Kappeler, D. Erni, and H. Jackel, “Average light velocities in periodic media,” J. Opt. Soc. Am. B 30, 2849–2854 (2013). [CrossRef]
  24. J. Cheng, J. H. Lee, K. Wang, C. Xu, K. G. Jespersen, M. Garmund, L. Grüner-Nielsen, and D. Jakobsen, “Generation of Čerenkov radiation at 850 nm in higher-order-mode fiber,” Opt. Express 19, 8774–8780 (2011). [CrossRef]
  25. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008). [CrossRef]
  26. K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013). [CrossRef]
  27. B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited