OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 484–493

Quantum Rabi oscillations in graphene

Enamullah, Vipin Kumar, Upendra Kumar, and Girish S. Setlur  »View Author Affiliations


JOSA B, Vol. 31, Issue 3, pp. 484-493 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000484


View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Graphene has been theoretically shown to exhibit anomalous Rabi oscillations (AROs) far from resonance in addition to conventional Rabi oscillations close to resonance (classical light frequency matches particle-hole frequency). The ARO has been attributed to the pseudospin degree of freedom that is unique to graphene-like systems. In this work, we show the same phenomenon also occurs in the single-photon limit or even in a vacuum. This is to be expected for conventional Rabi oscillations; however, the prediction that AROs also occur in the single-photon situation means that this notion of ARO is robust and not an artifact of approximations. We also study collapse and revival of both conventional and AROs in response to a coherent radiation field and extract the collapse and revival times in both cases.

© 2014 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: August 23, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: December 16, 2013
Published: February 13, 2014

Citation
Enamullah, Vipin Kumar, Upendra Kumar, and Girish S. Setlur, "Quantum Rabi oscillations in graphene," J. Opt. Soc. Am. B 31, 484-493 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-3-484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  2. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselove, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  3. P. R. Wallace, “The band theory of graphite,” Phys. Rev. 71, 622–634 (1947). [CrossRef]
  4. I. I. Rabi, “Space quantization in gyrating magnetic field,” Phys. Rev. 51, 652–654 (1937). [CrossRef]
  5. L. Allen and J. H. Eberly, Optical Resonances and Two-Level Atoms (Wiley, 1975).
  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  7. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  8. C. Gerry and P. Knight, Introductory Quantum Optics, 3rd ed. (Cambridge University, 2005).
  9. F. W. Cummings, “Stimulated emission of radiation in a single mode,” Phys. Rev. 140, A1051–A1056 (1965). [CrossRef]
  10. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  11. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1323–1326 (1980). [CrossRef]
  12. N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, “Coherence versus incoherence: collapse and revival in a simple quantum model,” Phys. Rev. A 23, 236–247 (1981). [CrossRef]
  13. H. I. Yoo, J. J. Sanchez-Mondragon, and J. H. Eberly, “Non-linear dynamics of the fermion-boson model: interface between revivals and the transition to irregularity,” J. Phys. A 14, 1383–1397 (1981). [CrossRef]
  14. M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, “Quantum Rabi oscillation: a direct test of field quantization in a cavity,” Phys. Rev. Lett. 76, 1800–1803 (1996). [CrossRef]
  15. P. Nussenzweig, F. Bernardot, M. Brune, J. Hare, J. M. Raimond, S. Haroche, and W. Gawlik, “Preparation of high-principle-quantum-number “circular” states of rubidium,” Phys. Rev. A 48, 3991–3994 (1993). [CrossRef]
  16. H. Haug and S. W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  17. E. G. Mishchenko, “Dynamic conductivity of graphene beyond linear response,” Phys. Rev. Lett. 103, 246802 (2009). [CrossRef]
  18. K. L. Ishikawa, “Nonlinear optical response of graphene in time domain,” Phys. Rev. B 82, 201402(R) (2010). [CrossRef]
  19. B. Dora, K. Ziegler, P. Thalmeier, and M. Nakamura, “Rabi oscillations in Landau-quantized graphene,” Phys. Rev. Lett. 102, 036803 (2009). [CrossRef]
  20. Enamullah, V. Kumar, and G. S. Setlur, “Crossover of coherent Rabi oscillations in graphene,” Physica B 407, 4600–4609 (2012). [CrossRef]
  21. M. Breusing, S. Kuehn, T. Winzer, E. Malic, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, “Ultrafast nonequillibrium carrier dynamics in a single graphene layer,” Phys. Rev. B 83, 153410 (2011). [CrossRef]
  22. S. Swain, “A concise expression for the all order Bloch-Siegert shift,” Phys. Lett. A 46, 435–436 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited