OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 512–516

Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation

Jiancheng Fang, Shuangai Wan, Jie Qin, Chen Zhang, and Wei Quan  »View Author Affiliations

JOSA B, Vol. 31, Issue 3, pp. 512-516 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (488 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spin-exchange relaxation-free (SERF) atomic magnetometers usually adopt Faraday modulation to achieve better performance but suffer from laser intensity noise, thermal noise generated by the Faraday modulator, and nonmagnetic technical noise. These noises limit the sensitivity of the SERF magnetometer. We demonstrate a SERF magnetic gradiometer with dual-beam and closed-loop Faraday modulation. Operating in the SERF regime, the gradiometer utilizes an additional Faraday modulator rotation feedback to suppress probe laser intensity noise and thermal noise associated with the Faraday modulator, and it simultaneously uses dual-beam difference to cancel common-mode nonmagnetic technical noises. A gradient sensitivity of 14fT/Hz1/2 per 1 cm gradiometer base length was achieved using Cs atoms.

© 2014 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(230.0230) Optical devices : Optical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: October 22, 2013
Revised Manuscript: January 15, 2014
Manuscript Accepted: January 16, 2014
Published: February 13, 2014

Jiancheng Fang, Shuangai Wan, Jie Qin, Chen Zhang, and Wei Quan, "Spin-exchange relaxation-free magnetic gradiometer with dual-beam and closed-loop Faraday modulation," J. Opt. Soc. Am. B 31, 512-516 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000). [CrossRef]
  2. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, and L. Moi, “Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment,” J. Opt. Soc. Am. B 24, 2357–2362 (2007). [CrossRef]
  3. H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006). [CrossRef]
  4. G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22, 77–87 (2005). [CrossRef]
  5. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002). [CrossRef]
  6. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010). [CrossRef]
  7. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003). [CrossRef]
  8. R. L. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77, 101101 (2006). [CrossRef]
  9. M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008). [CrossRef]
  10. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008). [CrossRef]
  11. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011). [CrossRef]
  12. T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012). [CrossRef]
  13. A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011). [CrossRef]
  14. Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006). [CrossRef]
  15. J. Vrba, “SQUID gradiometers in real environments,” in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock, ed., Vol. 329 of NATO ASI Series E: Applied Sciences (Kluwer, 1996), pp. 117–178.
  16. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002). [CrossRef]
  17. V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008). [CrossRef]
  18. V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012). [CrossRef]
  19. V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010). [CrossRef]
  20. F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, “Laser power stabilization for second-generation gravitational wave detectors,” Opt. Lett. 31, 2000–2002 (2006). [CrossRef]
  21. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation (Princeton University, 2008).
  22. T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited