OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 551–558

Modulational instability due to cross-phase modulation versus multiple four-wave mixing: the normal dispersion regime

Andrea Armaroli and Stefano Trillo  »View Author Affiliations

JOSA B, Vol. 31, Issue 3, pp. 551-558 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the propagation of two parallel polarized pump beams in the framework of a single nonlinear Schrödinger equation in order to thoroughly understand the modulation instability process in the regime of normal group-velocity dispersion. A linear stability analysis based on Floquet theory allows us to account for four-wave mixing and to contrast the results with those arising from incoherent nonlinear coupling due to cross-phase modulation only. Based on the nature of the unstable eigenvectors, we explain why, in the normal dispersion regime, modulation instability is not observed in the scalar configuration. Numerical simulations validate the analysis.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: November 12, 2013
Manuscript Accepted: January 10, 2014
Published: February 20, 2014

Andrea Armaroli and Stefano Trillo, "Modulational instability due to cross-phase modulation versus multiple four-wave mixing: the normal dispersion regime," J. Opt. Soc. Am. B 31, 551-558 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986). [CrossRef]
  2. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982). [CrossRef]
  3. G. Cappellini and S. Trillo, “Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B 8, 824–838 (1991). [CrossRef]
  4. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486–490 (1970).
  5. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987). [CrossRef]
  6. C. J. McKinstrie and R. Bingham, “The modulational instability of coupled waves,” Phys. Fluids B 1, 230–237 (1989). [CrossRef]
  7. C. J. McKinstrie and G. G. Luther, “The modulational instability of collinear waves,” Phys. Scr. T30, 31–40 (1990). [CrossRef]
  8. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A 39, 3406–3413 (1989). [CrossRef]
  9. J. E. Rothenberg, “Modulational instability for normal dispersion,” Phys. Rev. A 42, 682–685 (1990). [CrossRef]
  10. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhart, and J. D. Harvey, “Cross-phase modulation instability in high-birefringence fibers,” Opt. Commun. 78, 137–142 (1990). [CrossRef]
  11. C. De Angelis, M. Santagiustina, and S. Trillo, “Induced modulational instability in high-birefringence fibers: the strong conversion regime,” Opt. Lett. 19, 335–337 (1994). [CrossRef]
  12. C. De Angelis, M. Santagiustina, and S. Trillo, “Four-photon homoclinic instabilities in nonlinear highly birefringent media,” Phys. Rev. A 51, 774–791 (1995). [CrossRef]
  13. J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, “Cross-phase modulation instability in photonic crystal fibers,” Opt. Lett. 31, 873–875 (2006). [CrossRef]
  14. E. Seve, G. Millot, and S. Trillo, “Strong four-photon conversion regime of cross-phase modulation induced modulational instability,” Phys. Rev. E 61, 3139–3150 (2000). [CrossRef]
  15. A. Kudlinski, A. Bendahmane, D. Labat, S. Virally, R. T. Murray, E. J. R. Kelleher, and A. Mussot, “Simultaneous scalar and cross-phase modulation instabilities in highly birefringent photonic crystal fiber,” Opt. Express 21, 8437–8443 (2013). [CrossRef]
  16. A different type of MI in birefringent fibers involves coherent coupling between the two polarizations; see S. Wabnitz, “Modulational polarization instability of light in a nonlinear birefringent dispersive medium,” Phys. Rev. A 38, 2018–2021 (1988). [CrossRef]
  17. G. Millot, S. Pitois, and P. Tchofo-Dinda, “Modulational instability processes in optical isotropic fibers under dual frequency circular polarization pumping,” J. Opt. Soc. Am. B 19, 454–460 (2002). [CrossRef]
  18. J. R. Thompson and R. Roy, “Nonlinear dynamics of multiple four-wave mixing processes in a single-mode fiber,” Phys. Rev. A 43, 4987–4996 (1991). [CrossRef]
  19. D. L. Hart, A. F. Judy, T. A. B. Kennedy, R. Roy, and K. Stoev, “Conservation law for multiple four-wave-mixing processes in a nonlinear optical medium,” Phys. Rev. A 50, 1807–1813 (1994). [CrossRef]
  20. S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994). [CrossRef]
  21. D. L. Hart, A. F. Judy, R. Roy, and J. W. Beletic, “Dynamical evolution of multiple four-wave mixing processes in an optical fiber,” Phys. Rev. E 57, 4757–4774 (1998). [CrossRef]
  22. X. Liu, X. Zhou, and C. Lou, “Multiple four-wave mixing self-stability in optical fibers,” Phys. Rev. A 72, 013811 (2005). [CrossRef]
  23. J. E. Rothenberg, “Modulational instability of copropagating frequencies for normal dispersion,” Phys. Rev. Lett. 64, 813 (1990). [CrossRef]
  24. G. P. Agrawal, “Modulational instability of copropagating frequencies for normal dispersion,” Phys. Rev. Lett. 64, 813 (1990). [CrossRef]
  25. M. Yu, C. J. McKinstrie, and G. P. Agrawal, “Instability due to cross-phase modulation in the normal dispersion regime,” Phys. Rev. E 48, 2178–2186 (1993). [CrossRef]
  26. T. Tanemura and K. Kikuchi, “Unified analysis of modulational instability induced by cross-phase modulation in optical fibers,” J. Opt. Soc. Am. B 20, 2502–2514 (2003). [CrossRef]
  27. A. Armaroli and S. Trillo, “Collective modulation instability of multiple four-wave mixing,” Opt. Lett. 36, 1999–2001 (2011). [CrossRef]
  28. J. Fatome, C. Finot, A. Armaroli, and S. Trillo, “Observation of modulationally unstable multi-wave mixing,” Opt. Lett. 38, 181–183 (2013). [CrossRef]
  29. S. Trillo and S. Wabnitz, “Dynamic spontaneous fluorescence in parametric wave coupling,” Phys. Rev. E 55, R4897–R4900 (1997). [CrossRef]
  30. S. Trillo and S. Wabnitz, “Bloch wave theory of modulational polarization instabilities in birefringent optical fibers,” Phys. Rev. E 56, 1048–1058 (1997). [CrossRef]
  31. R. A. Fuerst, D. M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, “Spatial modulational instability and multisoliton-like generation in a quadratically nonlinear optical medium,” Phys. Rev. Lett. 78, 2756–2759 (1997). [CrossRef]
  32. E. Ciaramella, F. Curti, and S. Trillo, “All-optical signal reshaping by means of four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett. 13, 142–144 (2001). [CrossRef]
  33. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007). [CrossRef]
  34. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8, 538–547 (2002). [CrossRef]
  35. M. E. Marhic, Fiber Optical Parametric Amplifiers, Oscillators, and Related Devices (Cambridge University, 2008).
  36. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5, 430–436 (2011).
  37. J. Fatome, S. Pitois, and G. Millot, “20-GHz-to-1-THz repetition rate pulse sources based on multiple four-wave-mixing in optical fibers,” IEEE J. Quantum Electron. 42, 1038–1046 (2006). [CrossRef]
  38. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17, 22983–22991 (2009). [CrossRef]
  39. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. G. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett. 35, 1440–1442 (2010). [CrossRef]
  40. S. Trillo and A. Valiani, “Hydrodynamic instability of four-wave-mixing,” Opt. Lett. 35, 3967–3969 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited