OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 559–564

Liquid metacrystals

Alexander A. Zharov, Alexander A. Zharov, Jr., and Nina A. Zharova  »View Author Affiliations

JOSA B, Vol. 31, Issue 3, pp. 559-564 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new type of metamaterial, which we call liquid metacrystals (LMCs), consisting of elongated particles (meta-atoms) suspended in viscous liquid. A constant homogeneous external electric field applied to such a material induces polarization of the meta-atoms and orients them along one axis, resulting in anisotropic electromagnetic properties of the system. The axis of anisotropy can be reoriented, and this type of tunability resembles that of liquid crystals in the nematic phase. Moreover, meta-atoms also reorient in response to the high-frequency electromagnetic waves, suggesting strong nonlinear properties of the LMCs. The artificial meta-atoms can be designed as classical oscillators to enhance their tunability. As a particular example of an electromagnetic wave control by LMCs, we study linear and nonlinear transmission of radiation through a slab of this metamaterial.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(160.1245) Materials : Artificially engineered materials
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: November 20, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 20, 2014
Published: February 20, 2014

Alexander A. Zharov, Alexander A. Zharov, and Nina A. Zharova, "Liquid metacrystals," J. Opt. Soc. Am. B 31, 559-564 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  3. S. Linden, C. Enkrich, M. Wegener, T. Zhou, T. Kochny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353 (2004). [CrossRef]
  4. S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94, 037402 (2005). [CrossRef]
  5. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780  nm wavelength,” Opt. Lett. 32, 53 (2007). [CrossRef]
  6. U. K. Chettiar, A. V. Kidishev, H. K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, “Dual-band negative index metamaterial: double negative at 813  nm and single negative at 772  nm,” Opt. Lett. 32, 1671–1673 (2007). [CrossRef]
  7. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef]
  8. A. Minovich, J. Farnell, D. N. Neshev, I. McKervacher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Y. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett. 100, 121113 (2012). [CrossRef]
  9. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett. 91, 037401 (2003). [CrossRef]
  10. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater. 11, 30–33 (2012). [CrossRef]
  11. I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Metamaterials with conformational nonlinearity,” Sci. Rep. 1, 138 (2011).
  12. W. L. Barnes, A. Dereux, and A. Ebbensen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  13. J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharau, P. Nordlander, and F. Capasso, “Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors,” Nano Lett. 12, 5376–5381 (2012). [CrossRef]
  14. A. Wiener, A. I. Fernandez-Dominguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012). [CrossRef]
  15. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011). [CrossRef]
  16. E. Wang, T. P. White, and K. R. Catchpole, “Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells,” Opt. Express 20, 13226–13237 (2012). [CrossRef]
  17. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef]
  18. M. A. Noginov, Y. A. Bernakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94, 151105 (2009). [CrossRef]
  19. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14, 063001 (2012). [CrossRef]
  20. V. M. Shalaev and S. Kawata, Nanophotonics with Surface Plasmons (Elsevier Science, 2007).
  21. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  22. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  23. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010). [CrossRef]
  24. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  25. I. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009). [CrossRef]
  26. X. Meng, U. Guler, A. V. Kidishev, K. Fujita, K. Tanaka, and V. M. Shalaev, “Unidirectional spaser in symmetry-broken plasmonic core-shell nanocavity,” Sci. Rep. 3, 1241 (2013).
  27. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  28. B. Edwards, A. Alu, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef]
  29. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008). [CrossRef]
  30. L. Novotny, “Optical antennas tuned to pitch,” Nature 455, 887 (2008). [CrossRef]
  31. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]
  32. P. G. deGennes and J. Prost, The Physics of Liquid Crystals, 2nd ed (Clarendon, 1995).
  33. A. B. Golovin and O. D. Lavrentovich, “Electrically reconfigurable optical metamaterial based on colloidal dispersion of metal nanorods in dielectric fluid,” Appl. Phys. Lett. 95, 254104 (2009). [CrossRef]
  34. M. Liu, Y. Sun, D. A. Powell, I. V. Shadrivov, M. Lapine, R. C. McPhedran, and Y. S. Kivshar, “Nonlinear response via intrinsic rotation in metamaterials,” Phys. Rev. B 87, 235126 (2013). [CrossRef]
  35. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express 18, 25665–25676 (2010). [CrossRef]
  36. J. S. Schwinger, L. L. Deraad, K. A. Milton, and W. Tsai, Classical Electrodynamics (Westview, 1998).
  37. L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, 1966).
  38. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Pergamon, 1987).
  39. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Pergamon, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited