OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 572–580

Line of polarization attraction in highly birefringent optical fibers

M. Guasoni, E. Assémat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny  »View Author Affiliations

JOSA B, Vol. 31, Issue 3, pp. 572-580 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the phenomenon of polarization attraction in a highly birefringent fiber. This polarization process originates from the nonlinear interaction of two counter-propagating beams. We show that all polarization states of the forward (signal) beam are attracted toward a specific line of polarization states on the surface of the Poincaré sphere, whose characteristics are determined by the polarization state of the injected backward (pump) beam. This phenomenon of polarization attraction takes place without any loss of energy for the signal beam. The stability of different stationary solutions is also discussed through intensive numerical simulations. On the basis of mathematical techniques recently developed for the study of Hamiltonian singularities, we provide a detailed description of this spontaneous polarization process. In several particular cases of interest, the equation of the line of polarization attraction on the Poincaré sphere can be obtained in explicit analytical form.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.0190) Nonlinear optics : Nonlinear optics
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 1, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 19, 2014
Published: February 26, 2014

M. Guasoni, E. Assémat, P. Morin, A. Picozzi, J. Fatome, S. Pitois, H. R. Jauslin, G. Millot, and D. Sugny, "Line of polarization attraction in highly birefringent optical fibers," J. Opt. Soc. Am. B 31, 572-580 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25, 257–259 (2000). [CrossRef]
  2. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attactors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005), doi:10.1209/epl/i2004-10469-9. [CrossRef]
  3. B. Crosignani, B. Daino, and P. Di Porto, “Depolarization of light due to the optical Kerr effect in low-birefringence single-mode fibers,” J. Opt. Soc. Am. B 3, 1120–1123 (1986). [CrossRef]
  4. A. Picozzi, “Entropy and degree of polarization for nonlinear optical waves,” Opt. Lett. 29, 1653–1655 (2004). [CrossRef]
  5. H. Prakash and D. Singh, “Change in coherence properties and degree of polarization of light propagating in a lossless isotropic nonlinear Kerr medium,” J. Phys. B 41, 045401 (2008). [CrossRef]
  6. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009). [CrossRef]
  7. S. Sergeyev, S. Popov, and A. T. Friberg, “Virtually isotropic transmission media with fiber Raman amplifier,” IEEE J. Quantum Electron. 46, 1492–1497 (2010). [CrossRef]
  8. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011). [CrossRef]
  9. S. V. Sergeyev, “Activated polarization pulling and de-correlation of signal and pump states of polarization in a fiber Raman amplifier,” Opt. Express 19, 24268–24279 (2011). [CrossRef]
  10. V. Kozlov, J. Nuno, J. D. Ania-Castanon, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol. 29, 341–347 (2011). [CrossRef]
  11. N. J. Muga, M. F. S. Ferreira, and A. N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19, 18707–18712 (2011). [CrossRef]
  12. S. Sergeyev, “Fiber Raman amplification in a two-scale spun fiber,” Opt. Mater. Express 2, 1683–1689 (2012). [CrossRef]
  13. S. Sergeyev and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron. 48, 56–60 (2012). [CrossRef]
  14. P. Morin, S. Pitois, and J. Fatome, “Simultaneous polarization attraction and Raman amplification of a light beam in optical fibers,” J. Opt. Soc. Am. B 29, 2046–2052 (2012). [CrossRef]
  15. Z. Shmilovitch, N. Primerov, A. Zadok, A. Eyal, S. Chin, L. Thevenaz, and M. Tur, “Dual-pump push-pull polarization control using stimulated Brillouin scattering,” Opt. Express 19, 25873–25880 (2011). [CrossRef]
  16. M. I. Dykman, B. Golding, L. I. McCann, V. N. Smelyanskiy, D. G. Luchinsky, R. Mannella, and P. V. E. McClintock, “Activated escape of periodically driven systems,” Chaos 11, 587–594 (2001). [CrossRef]
  17. D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, “Role of singular tori in the dynamics of spatiotemporal nonlinear wave systems,” Phys. Rev. Lett. 103, 034102 (2009). [CrossRef]
  18. S. Lagrange, D. Sugny, A. Picozzi, and H. R. Jauslin, “Singular tori as attractors of four-wave interaction systems,” Phys. Rev. E 81, 016202 (2010). [CrossRef]
  19. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010). [CrossRef]
  20. V. V. Kozlov and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35, 3949–3951 (2010). [CrossRef]
  21. V. V. Kozlov, J. Nuno, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28, 100–108 (2011). [CrossRef]
  22. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4040 (2011). [CrossRef]
  23. M. Guasoni, V. V. Kozlov, and S. Wabnitz, “Theory of polarization attraction in parametric amplifiers based on telecommunication fibers,” J. Opt. Soc. Am. B 29, 2710–2720 (2012). [CrossRef]
  24. M. Guasoni and S. Wabnitz, “Nonlinear polarizers based on four-wave mixing in high-birefringence optical fibers,” J. Opt. Soc. Am. B 29, 1511–1520 (2012). [CrossRef]
  25. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef]
  26. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011). [CrossRef]
  27. V. V. Kozlov, J. Fatome, P. Morin, S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear repolarization dynamics in optical fibers: transient polarization attraction,” J. Opt. Soc. Am. B 28, 1782–1791 (2011). [CrossRef]
  28. B. Stiller, P. Morin, D. M. Nguyen, J. Fatome, S. Pitois, E. Lantz, H. Maillotte, C. R. Menyuk, and T. Sylvestre, “Demonstration of polarization pulling using a fiber-optic parametric amplifier,” Opt. Express 20, 27248–27253 (2012). [CrossRef]
  29. J. Fatome, S. Pitois, P. Morin, D. Sugny, E. Assémat, A. Picozzi, H. R. Jauslin, G. Millot, V. V. Kozlov, and S. Wabnitz, “A universal optical all-fiber omnipolarizer,” Sci. Rep. 2, 938–946 (2012). [CrossRef]
  30. P.-Y. Bony, M. Guasoni, E. Assémat, S. Pitois, D. Sugny, A. Picozzi, H. R. Jauslin, and J. Fatome, “Optical flip-flop memory and data packet switching operation based on polarization bistability in a telecommunication optical fiber,” J. Opt. Soc. Am. B 30, 2318–2325 (2013). [CrossRef]
  31. V. V. Kozlov and S. Wabnitz, “Instability of optical solitons in the boundary value problem for a medium of finite extension,” Lett. Math. Phys. 96, 405–413 (2011). [CrossRef]
  32. V. V. Kozlov, K. Turitsyn, and S. Wabnitz, “Nonlinear repolarization in optical fibers: polarization attraction with copropagating beams,” Opt. Lett. 36, 4050–4052 (2011). [CrossRef]
  33. V. V. Kozlov, M. Barozzi, A. Vannucci, and S. Wabnitz, “Lossless polarization attraction of co-propagating beams in telecom fibers,” J. Opt. Soc. Am. B 30, 530–540 (2013). [CrossRef]
  34. R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems (Birkhauser, 1997).
  35. K. Efstathiou and D. A. Sadovskii, “Normalization and global analysis of perturbations of the hydrogen atom,” Rev. Mod. Phys. 82, 2099–2154 (2010). [CrossRef]
  36. E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Hamiltonian tools for the analysis of optical polarization control,” J. Opt. Soc. Am. B 29, 559–571 (2012). [CrossRef]
  37. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989).
  38. K. S. Turitsyn and S. Wabnitz, “Stability analysis of polarization attraction in optical fibers,” Opt. Commun. 307, 62–66 (2013). [CrossRef]
  39. S. Trillo and S. Wabnitz, “Intermittent spatial chaos in the polarization of counterpropagating beams in a birefringent optical fiber,” Phys. Rev. A 36, 3881–3884 (1987). [CrossRef]
  40. A. L. Gaeta, R. W. Boyd, J. R. Ackerhalt, and P. W. Milonni, “Instabilities and chaos in the polarizations of counterpropagating light fields,” Phys. Rev. Lett. 58, 2432–2435 (1987). [CrossRef]
  41. D. David, D. D. Holm, and M. V. Tratnik, “Hamiltonian chaos in nonlinear optical polarization dynamics,” Phys. Rep. 187, 281–367 (1990). [CrossRef]
  42. E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Instabilities of optical solitons and Hamiltonian singular solutions in a medium of finite extension,” Phys. Rev. A 84, 013809 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited