OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 3 — Mar. 1, 2014
  • pp: 603–606

Plasmonic analogs of Zitterbewegung in nanoscale metal waveguide arrays

Shulin Ding and Guo Ping Wang  »View Author Affiliations

JOSA B, Vol. 31, Issue 3, pp. 603-606 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically observed plasmonic Zitterbewegung (ZB) in nanoscale binary metal waveguide arrays constructed by alternately filling two different dielectrics into adjacent guides. The positive- and negative-energy states of a relativistic electron, whose interference causes the ZB, are mimicked by surface plasmon polariton modes of the two bands of the guide array, respectively. Different from photonic ZB appearing in dielectric systems, we also found that SPP wave packets satisfy a negative-coupled Dirac equation; hence the beam center of SPP shows a shift direction opposite to photonic ZB.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: October 11, 2013
Revised Manuscript: December 8, 2013
Manuscript Accepted: January 23, 2014
Published: February 26, 2014

Shulin Ding and Guo Ping Wang, "Plasmonic analogs of Zitterbewegung in nanoscale metal waveguide arrays," J. Opt. Soc. Am. B 31, 603-606 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Schrödinger, “Ueber die kraeftefreie Bewegung in der relativistischen Quantenmechanik,” Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24, 418–428 (1930).
  2. W. Zawadzki and T. M. Rusin, “Zitterbewegung (trembling motion) of electrons in semiconductors: a review,” J. Phys. Condens. Matter 23, 143201 (2011). [CrossRef]
  3. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. F. Roos, “Quantum simulation of the Dirac equation,” Nature 463, 68–71 (2010). [CrossRef]
  4. J. Y. Vaishnav and C. W. Clark, “Observing Zitterbewegung with ultracold atoms,” Phys. Rev. Lett. 100, 153002 (2008). [CrossRef]
  5. X. Zhang and Z. Liu, “Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals,” Phys. Rev. Lett. 101, 264303 (2008). [CrossRef]
  6. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser Photon. Rev. 3, 243–261 (2009). [CrossRef]
  7. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  8. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef]
  9. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103, 033902 (2009). [CrossRef]
  10. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006). [CrossRef]
  11. E. Verhagen, R. de Waele, L. Kuipers, and A. Polman, “Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides,” Phys. Rev. Lett. 105, 223901 (2010). [CrossRef]
  12. Y. Wang, K. Zhou, X. Zhang, K. Yang, Y. Wang, Y. Song, and S. Liu, “Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays,” Opt. Lett. 35, 685–687 (2010). [CrossRef]
  13. W. Lin, X. Zhou, G. P. Wang, and C. T. Chan, “Spatial Bloch oscillations of plasmons in nanoscale metal waveguide arrays,” Appl. Phys. Lett. 91, 243113 (2007). [CrossRef]
  14. R. Davoyan, I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Plasmonic Bloch oscillations in chirped metal-dielectric structures,” Appl. Phys. Lett. 94, 161105 (2009). [CrossRef]
  15. R. Shiu and Y. Lan, “Plasmonic Zener tunneling in metal-dielectric waveguide arrays,” Opt. Lett. 36, 4179–4181 (2011). [CrossRef]
  16. X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett. 100, 113903 (2008). [CrossRef]
  17. S. Longhi, “Photonic analog of Zitterbewegung in binary waveguide arrays,” Opt. Lett. 35, 235–237 (2010). [CrossRef]
  18. F. Dreisow, M. Heinrich, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Classical simulation of relativistic Zitterbewegung in photonic lattices,” Phys. Rev. Lett. 105, 143902 (2010). [CrossRef]
  19. S. Longhi, “Klein tunneling in binary photonics superlattices,” Phys. Rev. B 81, 075102 (2010). [CrossRef]
  20. F. Dreisow, R. Keil, A. Tünnermann, S. Nolte, S. Longhi, and A. Szameit, “Klein tunneling of light in waveguide superlattices,” Europhys. Lett. 97, 10008 (2012). [CrossRef]
  21. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  22. E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic, 1985).
  23. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited