OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 656–663

Inseparability criterion using higher-order Schrödinger–Robertson uncertainty relation

Chang-Woo Lee, Junghee Ryu, Jeongho Bang, and Hyunchul Nha  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 656-663 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000656


View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We formulate an inseparability criterion based on the recently derived generalized Schrödinger–Robertson uncertainty relation (SRUR) [J. Phys. A 45, 195305 (2012)] together with the negativity of partial transpose (PT). This generalized SRUR systematically deals with two orthogonal quadrature amplitudes to higher orders, so it is relevant to characterize non-Gaussian quantum statistics. We first present a method that relies on the single-mode marginal distribution of two-mode fields under PT followed by beam-splitting operation. We then extend the SRUR to two-mode cases and develop a full two-mode version of the inseparability criterion. We find that our formulation can be useful to detect entanglement of non-Gaussian states even when, e.g., the entropic criterion that also involves higher-order moments fails.

© 2014 Optical Society of America

OCIS Codes
(000.2658) General : Fundamental tests
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 5, 2013
Manuscript Accepted: January 20, 2014
Published: March 3, 2014

Citation
Chang-Woo Lee, Junghee Ryu, Jeongho Bang, and Hyunchul Nha, "Inseparability criterion using higher-order Schrödinger–Robertson uncertainty relation," J. Opt. Soc. Am. B 31, 656-663 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000). [CrossRef]
  2. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000). [CrossRef]
  3. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, “Entangling macroscopic oscillators exploiting radiation pressure,” Phys. Rev. Lett. 88, 120401 (2002). [CrossRef]
  4. M. G. Raymer, A. C. Funk, B. C. Sanders, and H. de Guise, “Separability criterion for separate quantum systems,” Phys. Rev. A 67, 052104 (2003). [CrossRef]
  5. G. S. Agarwal and A. Biswas, “Inseparability inequalities for higher order moments for bipartite systems,” New J. Phys. 7, 211 (2005). [CrossRef]
  6. E. Shchukin and W. Vogel, “Inseparability criteria for continuous bipartite quantum states,” Phys. Rev. Lett. 95, 230502 (2005). [CrossRef]
  7. M. Hillery and M. S. Zubairy, “Entanglement conditions for two-mode states,” Phys. Rev. Lett. 96, 050503 (2006). [CrossRef]
  8. H. Nha and J. Kim, “Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras: detection of non-Gaussian entangled states,” Phys. Rev. A 74, 012317 (2006). [CrossRef]
  9. A. Miranowicz, M. Piani, P. Horodecki, and R. Horodecki, “Inseparability criteria based on matrices of moments,” Phys. Rev. A 80, 052303 (2009). [CrossRef]
  10. A. Miranowicz, M. Bartkowiak, X. Wang, Y.-X. Liu, and F. Nori, “Testing nonclassicality in multimode fields: a unified derivation of classical inequalities,” Phys. Rev. A 82, 013824 (2010). [CrossRef]
  11. S. P. Walborn, B. G. Taketani, A. Salles, F. Toscano, and R. L. de Matos Filho, “Entropic entanglement criteria for continuous variables,” Phys. Rev. Lett. 103, 160505 (2009). [CrossRef]
  12. H. Nha, S.-Y. Lee, S.-W. Ji, and M. S. Kim, “Efficient entanglement criteria beyond Gaussian limits using Gaussian measurements,” Phys. Rev. Lett. 108, 030503 (2012). [CrossRef]
  13. E. Shchukin, T. Richter, and W. Vogel, “Nonclassicality criteria in terms of moments,” Phys. Rev. A 71, 011802 (2005). [CrossRef]
  14. J. S. Ivan, N. Mukunda, and R. Simon, “Moments of non-Gaussian Wigner distributions and a generalized uncertainty principle: I. The single-mode case,” J. Phys. A 45, 195305 (2012). [CrossRef]
  15. J. S. Ivan, K. Kumar, N. Mukunda, and R. Simon, “Invariant theoretic approach to uncertainty relations for quantum systems,” arXiv:1205.5132 (2012).
  16. E. V. Shchukin and W. Vogel, “Nonclassical moments and their measurement,” Phys. Rev. A 72, 043808 (2005). [CrossRef]
  17. E. P. Menzel, F. Deppe, M. Mariantoni, M. A. Araque Caballero, A. Baust, T. Niemczyk, E. Hoffmann, A. Marx, E. Solano, and R. Gross, “Dual-path state reconstruction scheme for propagating quantum microwaves and detector noise tomography,” Phys. Rev. Lett. 105, 100401 (2010). [CrossRef]
  18. C. Eichler, D. Bozyigit, C. Lang, L. Steffen, J. Fink, and A. Wallraff, “Experimental state tomography of itinerant single microwave photons,” Phys. Rev. Lett. 106, 220503 U(2011). [CrossRef]
  19. A. Miranowicz and M. Piani, “Comment on “inseparability criteria for continuous bipartite quantum states,” Phys. Rev. Lett. 97, 058901 (2006). [CrossRef]
  20. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, 1985).
  21. A. Serafini and G. Adesso, “Standard forms and entanglement engineering of multimode Gaussian states under local operations,” J. Phys. A 40, 8041–8053 (2007). [CrossRef]
  22. R. Namiki, “Photonic families of non-Gaussian entangled states and entanglement criteria for continuous-variable systems,” Phys. Rev. A 85, 062307 (2012). [CrossRef]
  23. Q. Sun, H. Nha, and M. S. Zubairy, “Entanglement criteria and nonlocality for multimode continuous-variable systems,” Phys. Rev. A 80, 020101 (2009). [CrossRef]
  24. S.-Y. Lee, J. Park, H.-W. Lee, and H. Nha, “Generating arbitrary photon-number entangled states for continuous-variable quantum informatics,” Opt. Express 20, 14221–14233 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited