OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 672–677

Preparation of Knill–Lafamme–Milburn states based on superconducting qutrits

Qi-Gong Liu, Qi-Cheng Wu, and Xin Ji  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 672-677 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose two schemes for generating the Knill–Lafamme–Milburn states of two distant polar molecule ensembles, respectively, in two transmission-line resonators (TLRs) connected by a superconducting charge qutrit (SCQ), and of two SCQs in a TLR, respectively. Both schemes are robust against photon decay due to the virtual excitations of the microwave photons of the TLRs, and the spontaneous emission can be suppressed owing to the virtual transitions of the SCQs in the second scheme. In addition, the schemes have high controllability and feasibility under the current available techniques.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 25, 2013
Revised Manuscript: January 15, 2014
Manuscript Accepted: January 27, 2014
Published: March 5, 2014

Qi-Gong Liu, Qi-Cheng Wu, and Xin Ji, "Preparation of Knill–Lafamme–Milburn states based on superconducting qutrits," J. Opt. Soc. Am. B 31, 672-677 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992). [CrossRef]
  3. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  5. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996). [CrossRef]
  6. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  7. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  8. G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003). [CrossRef]
  9. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997). [CrossRef]
  10. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001). [CrossRef]
  11. G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002). [CrossRef]
  12. P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002). [CrossRef]
  13. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005). [CrossRef]
  14. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005). [CrossRef]
  15. X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006). [CrossRef]
  16. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007). [CrossRef]
  17. D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009). [CrossRef]
  18. X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010). [CrossRef]
  19. H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011). [CrossRef]
  20. X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013). [CrossRef]
  21. E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  22. J. Modławska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009). [CrossRef]
  23. J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004). [CrossRef]
  24. K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008). [CrossRef]
  25. K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010). [CrossRef]
  26. K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011). [CrossRef]
  27. L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Generation of two-atom Knill-Laflamme-Milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012). [CrossRef]
  28. S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007). [CrossRef]
  29. Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012). [CrossRef]
  30. P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006). [CrossRef]
  31. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004). [CrossRef]
  32. C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010). [CrossRef]
  33. C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
  34. L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009). [CrossRef]
  35. S. D. Huber and H. P. Büchler, “Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures,” Phys. Rev. Lett. 108, 193006 (2012). [CrossRef]
  36. B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012). [CrossRef]
  37. M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013). [CrossRef]
  38. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008). [CrossRef]
  39. M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008). [CrossRef]
  40. J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005). [CrossRef]
  41. G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010). [CrossRef]
  42. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003). [CrossRef]
  43. O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006). [CrossRef]
  44. X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003). [CrossRef]
  45. L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
  46. A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited