## Single and double changes of entanglement |

JOSA B, Vol. 31, Issue 4, pp. 691-696 (2014)

http://dx.doi.org/10.1364/JOSAB.31.000691

Enhanced HTML Acrobat PDF (354 KB)

### Abstract

The entanglement behavior for different classes of two-qubit systems passing through a generalized amplitude damping channel is discussed. The phenomena of sudden single and double changes and the sudden death of entanglement are reported for identical and nonidentical noise. It is shown that, for less entangled states, these phenomena appear for small values of channel strength. The effect of the channel can be frozen for these classes as one increases the channel strength. Maximum entangled states are more fragile than partial entangled states, where the entanglement decays very fast. However, one cannot freeze the effect of the noise channel for systems initially prepared in maximum entangled states. The decay rate of entanglement for systems affected by nonidentical noise is much larger than that affected by identical noise.

© 2014 Optical Society of America

**OCIS Codes**

(060.5565) Fiber optics and optical communications : Quantum communications

(270.5565) Quantum optics : Quantum communications

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: December 19, 2013

Revised Manuscript: January 21, 2014

Manuscript Accepted: January 22, 2014

Published: March 5, 2014

**Citation**

Nasser Metwally, "Single and double changes of entanglement," J. Opt. Soc. Am. B **31**, 691-696 (2014)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-691

Sort: Year | Journal | Reset

### References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- S. Bandyopadhyag, “Origin of noisy states whose teleportation fidelity can be enhanced through dissipation,” Phys. Rev. A 65, 022302 (2002). [CrossRef]
- T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Opt. Commun. 264, 393–397 (2006). [CrossRef]
- T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006). [CrossRef]
- X.-F. Qian and J. H. Eberly, “Initial conditions and entanglement sudden death,” Phys. Lett. A 376, 2931–2934 (2012). [CrossRef]
- N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010). [CrossRef]
- P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000). [CrossRef]
- Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010). [CrossRef]
- Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012). [CrossRef]
- H. Eleuch and N. Rachid, “Autocorrelation function of microcavity-emitting field in the non-linear regime,” Eur. Phys. J. D 57, 259–264 (2010). [CrossRef]
- H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005). [CrossRef]
- H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004). [CrossRef]
- K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011). [CrossRef]
- R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping channel,” Phys. Rev. A 77, 012318 (2008). [CrossRef]
- F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013). [CrossRef]
- J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013). [CrossRef]
- B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000). [CrossRef]
- B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys. B 72, 35–42 (2001). [CrossRef]
- T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence,” Quantum Inf. Comput. 7, 459–468 (2007).
- R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989). [CrossRef]
- S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997). [CrossRef]
- K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998). [CrossRef]
- A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996). [CrossRef]
- I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.