OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 704–715

Crossover from electromagnetically induced transparency to Autler–Townes splitting in open ladder systems with Doppler broadening

Chaohua Tan and Guoxiang Huang  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 704-715 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a general theoretical scheme to investigate the crossover from electromagnetically induced transparency (EIT) to Autler–Townes splitting (ATS) in open ladder-type atomic and molecular systems with Doppler broadening. We show that when the wavenumber ratio kc/kp1, EIT, ATS, and EIT-ATS crossover exist for both ladder-I and ladder-II systems, where kc (kp) is the wavenumber of control (probe) field. Furthermore, when kc/kp is far from 1, EIT can occur, but ATS is destroyed if the upper state of the ladder-I system is a Rydberg state. In addition, ATS exists but EIT is not possible if the control field used to couple the two lower states of the ladder-II system is a microwave field. The theoretical scheme developed here can be applied to atoms, molecules, and other systems (including Na2 molecules, and Rydberg atoms), and the results obtained may have practical applications in optical information processing and transformation.

© 2014 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.3690) Atomic and molecular physics : Line shapes and shifts

ToC Category:
Atomic and Molecular Physics

Original Manuscript: November 18, 2013
Revised Manuscript: January 19, 2014
Manuscript Accepted: January 27, 2014
Published: March 5, 2014

Chaohua Tan and Guoxiang Huang, "Crossover from electromagnetically induced transparency to Autler–Townes splitting in open ladder systems with Doppler broadening," J. Opt. Soc. Am. B 31, 704-715 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  2. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955). [CrossRef]
  3. C. Cohen-Tannoudji, “Amazing light: a volume dedicated to Charles Hard Townes on his 80th birthday,” in The Autler-Townes Effect Revisited,R. Y. Chiao, ed. (Springer, 1996), p. 109.
  4. G. S. Agarwal, “Nature of the quantum interference in electromagnetic-field-induced control of absorption,” Phys. Rev. A 55, 2467–2470 (1997). [CrossRef]
  5. P. Anisimov and O. Kocharovskaya, “Decaying-dressed-state analysis of a coherently driven three-level Λ system,” J. Mod. Opt. 55, 3159–3171 (2008). [CrossRef]
  6. T. Y. Abi-Salloum, “Electromagnetically induced transparency and Autler–Townes splitting: two similar but distinct phenomena in two categories of three-level atomic systems,” Phys. Rev. A 81, 053836 (2010). [CrossRef]
  7. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, “Objectively discerning Autler–Townes splitting from electromagnetically induced transparency,” Phys. Rev. Lett 107, 163604 (2011). [CrossRef]
  8. L. Giner, L. Veissier, B. Sparkes, A. S. Sheremet, A. Nicolas, O. S. Mishina, M. Scherman, S. Burks, I. Shomroni, D. V. Kupriyanov, P. K. Lam, E. Giacobino, and J. Laurat, “Experimental investigation of the transition between Autler–Townes splitting and electromagnetically-induced-transparency models,” Phys. Rev. A 87, 013823 (2013). [CrossRef]
  9. C. Tan, C. Zhu, and G. Huang, “Analytical approach on linear and nonlinear pulse propagations in an open Λ-type molecular system with Doppler broadening,” J. Phys. B 46, 025103 (2013). [CrossRef]
  10. C. Zhu, C. Tan, and G. Huang, “Crossover from electromagnetically induced transparency to Autler–Townes splitting in open V-type molecular systems,” Phys. Rev. A 87, 043813 (2013). [CrossRef]
  11. In literature, the ladder system is also called cascade system by many authors, e.g. [6].
  12. M. Saffman, T. G. Walker, and K. Mölmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]
  13. J. D. Pritchard, K. J. Weatherill, and C. S. Adams, “Non-linear optics using cold Rydberg atoms,” in Annual Review of Cold Atoms and Molecules, K. W. Madison, Y. Wang, A. M. Rey, and K. Bongs, eds. (World Scientific, 2013), Vol. 1, pp. 301–350.
  14. S. Sevinçli, C. Ates, T. Pohl, H. Schempp, C. S. Hofmann, G. Günter, T. Amthor, M. Weidemüller, J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Quantum interference in interacting three-level Rydberg gases: coherent population trapping and electromagnetically induced transparency,” J. Phys. B 44, 184018 (2011). [CrossRef]
  15. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007). [CrossRef]
  16. A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, “A giant electro-optic effect using polarizable dark states,” Nat. Phys. 4, 890–894 (2008). [CrossRef]
  17. K. J. Weatherill, J. D. Pritchard, R. P. Abel, M. G. Bason, A. K. Mohapatra, and C. S. Adams, “Electromagnetically induced transparency of an interacting cold Rydberg ensemble,” J. Phys. B 41, 201002 (2008). [CrossRef]
  18. U. Raitzsch, R. Heidemann, H. Weimer, B. Butscher, P. Kollmann, R. Löw, H. P. Büchler, and T. Pfau, “Investigation of dephasing rates in an interacting Rydberg gas,” New J. Phys. 11, 055014 (2009). [CrossRef]
  19. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom-light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010). [CrossRef]
  20. A. Lazoudis, E. H. Ahmed, L. Li, T. Kirova, P. Qi, A. Hansson, J. Magnes, and A. M. Lyyra, “Experimental observation of the dependence of Autler–Townes splitting on the probe and coupling laser wave-number ratio in Doppler-broadened open molecular cascade systems,” Phys. Rev. A 78, 043405 (2008). [CrossRef]
  21. Y. Zhao, C. Wu, B.-S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett 79, 641–644 (1997). [CrossRef]
  22. Y.-q. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51, 4959–4962 (1995). [CrossRef]
  23. J. Gea-Banacloche, Y.-q. Li, S.-z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995). [CrossRef]
  24. H. Lee, Y. Rostovtsev, and M. O. Scully, “Asymmetries between absorption and stimulated emission in driven three-level systems,” Phys. Rev. A 62, 063804 (2000). [CrossRef]
  25. J. J. Clarke, W. A. van Wijngaarden, and H. Chen, “Electromagnetically induced transparency using a vapor cell and a laser-cooled sample of cesium atoms,” Phys. Rev. A 64, 023818 (2001). [CrossRef]
  26. J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett 88, 173003 (2002). [CrossRef]
  27. E. Ahmed, A. Hansson, P. Qi, T. Kirova, A. Lazoudis, S. Kotochigova, A. M. Lyyra, L. Li, J. Qi, and S. Magnier, “Measurement of the electronic transition dipole moment by Autler–Townes splitting: comparison of three- and four-level excitation schemes for the Na2A1∑u+−X1∑g+ system,” J. Chem. Phys. 124, 084308 (2006). [CrossRef]
  28. E. Ahmed and A. M. Lyyra, “Effect of Doppler broadening on Autler–Townes splitting in the molecular cascade excitation scheme,” Phys. Rev. A 76, 053407 (2007). [CrossRef]
  29. R.-Y. Chang, W.-C. Fang, Z.-S. He, B.-C. Ke, P.-N. Chen, and C.-C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76, 053420 (2007). [CrossRef]
  30. H. S. Moon, L. Lee, and J. B. Kim, “Double resonance optical pumping effects in electromagnetically induced transparency,” Opt. Express 16, 12163–12170 (2008). [CrossRef]
  31. Y. Zhang, Z. Nie, Z. Wang, C. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3422 (2010). [CrossRef]
  32. H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, “Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells,” Nat. Photonics 4, 112–116 (2010). [CrossRef]
  33. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon–photon interactions via Rydberg blockade,” Phys. Rev. Lett. 107, 133602 (2011). [CrossRef]
  34. D. Petrosyan, J. Otterbach, and M. Fleischhauer, “Electromagnetically induced transparency with Rydberg atoms,” Phys. Rev. Lett. 107, 213601 (2011). [CrossRef]
  35. C. Ates, S. Sevincli, and T. Pohl, “Electromagnetically induced transparency in strongly interacting Rydberg gases,” Phys. Rev. A 83, 041802(R) (2011). [CrossRef]
  36. Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, “Observation of coherent many-body Rabi oscillations,” Nat. Phys. 8, 790–794 (2012). [CrossRef]
  37. B. Huber, T. Baluktsian, M. Schlagmüller, A. Kölle, H. Kübler, R. Löw, and T. Pfau, “GHz Rabi flopping to Rydberg states in hot atomic vapor cells,” Phys. Rev. Lett 107, 243001 (2011). [CrossRef]
  38. H. Schempp, G. Günter, C. S. Hofmann, C. Giese, S. D. Saliba, B. D. DePaola, T. Amthor, M. Weidemüller, S. Sevinçli, and T. Pohl, “Coherent population trapping with controlled interparticle interactions,” Phys. Rev. Lett. 104, 173602 (2010). [CrossRef]
  39. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012). [CrossRef]
  40. F. Bariani, Y. O. Dudin, T. A. B. Kennedy, and A. Kuzmich, “Dephasing of multiparticle Rydberg excitations for fast entanglement generation,” Phys. Rev. Lett 108, 030501 (2012). [CrossRef]
  41. J. A. Sedlacek, A. Schwettmann, H. Kbler, R. Löw, T. Pfau, and J. P. Shaffer, “Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances,” Nat. Phys. 8, 819–824 (2012). [CrossRef]
  42. E. Kuznetsova, O. Kocharovskaya, P. Hemmer, and M. O. Scully, “Atomic interference phenomena in solids with a long-lived spin coherence,” Phys. Rev. A 66, 063802 (2002). [CrossRef]
  43. H. Lee, Y. Rostovtsev, C. J. Bednar, and A. Javan, “From laser-induced line narrowing to electromagnetically induced transparency: closed system analysis,” Appl. Phys. B 76, 33–39 (2003). [CrossRef]
  44. L. Li and G. Huang, “Linear and nonlinear light propagations in a Doppler-broadened medium via electromagnetically induced transparency,” Phys. Rev. A 82, 023809 (2010). [CrossRef]
  45. Note that the wavenumber ratio defined in our paper is the reciprocal of that defined in [20].
  46. H. R. Gray and C. R. Stroud, “Autler–Townes effect in double optical resonance,” Opt. Commun. 25, 359–362 (1978). [CrossRef]
  47. S. Papademetriou, M. F. Van Leeuwen, and C. R. Stroud, “Autler–Townes effect for an atom in a 100% amplitude-modulated laser field. II. Experimental results,” Phys. Rev. A 53, 997–1003 (1996). [CrossRef]
  48. B. K. Teo, D. Feldbaum, T. Cubel, J. R. Guest, P. R. Berman, and G. Raithel, “Autler–Townes spectroscopy of the 5S1/2−5P3/2−44D cascade of cold 85Rb atoms,” Phys. Rev. A 68, 053407 (2003). [CrossRef]
  49. H. Zhang, L. Wang, J. Chen, S. Bao, L. Zhang, J. Zhao, and S. Jia, “Autler–Townes splitting of a cascade system in ultracold cesium Rydberg atoms,” Phys. Rev. A 87, 033835 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited