OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 716–722

Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber

Junqing Zhao, Yonggang Wang, Shuangchen Ruan, Peiguang Yan, Han Zhang, Yuen H. Tsang, Jinhui Yang, and Guoxi Huang  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 716-722 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present three operation regimes with an L-band erbium-doped fiber laser passively mode-locked by a graphene oxide saturable absorber (GOSA) that is fabricated by using a wet chemical method. One is a stable state of single soliton emission with pulse duration of 426 fs, which is the shortest pulse duration ever achieved with an L-band design by employing GOSA as the mode-locker. The other two operation regimes include bound-state soliton and dual-wavelength nanosecond pulse generation, which are demonstrated for the first time by using the GOSA mode-locker. Our results further indicate the practical potential of GOSA in ultrafast fiber lasers for achieving various mode-locking regimes.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 9, 2013
Revised Manuscript: January 28, 2014
Manuscript Accepted: January 28, 2014
Published: March 6, 2014

Junqing Zhao, Yonggang Wang, Shuangchen Ruan, Peiguang Yan, Han Zhang, Yuen H. Tsang, Jinhui Yang, and Guoxi Huang, "Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber," J. Opt. Soc. Am. B 31, 716-722 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013). [CrossRef]
  2. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004). [CrossRef]
  3. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10, 137–146 (2004). [CrossRef]
  4. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101, 153107 (2012). [CrossRef]
  5. Z. Zhang, L. Wang, and Y. Wang, “Sub-100 fs and passive harmonic mode-locking of dispersion-managed dissipative fiber laser with carbon nanotubes,” J. Lightwave Technol. 31, 3719–3725 (2013). [CrossRef]
  6. Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24, 015105 (2014). [CrossRef]
  7. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, “5-GHz pulsed fiber Fabry–Pérot laser mode-locked using carbon nanotubes,” IEEE Photon. Technol. Lett. 17, 750–752 (2005). [CrossRef]
  8. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16, 11453–11458 (2008). [CrossRef]
  9. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21, 23261–23271 (2013). [CrossRef]
  10. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater. 19, 3077–3083 (2009). [CrossRef]
  11. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). [CrossRef]
  12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]
  13. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferraria, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010). [CrossRef]
  14. A. Martinez and S. Yamashita, “10  GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101, 041118 (2012). [CrossRef]
  15. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012). [CrossRef]
  16. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3, 1365–1377 (2013). [CrossRef]
  17. X. Zhao, Z. B. Liu, W. B. Yan, Y. Wu, X. L. Zhang, Y. Chen, and J. G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011). [CrossRef]
  18. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express 20, 19463–19473 (2012). [CrossRef]
  19. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012). [CrossRef]
  20. Y. G. Wang, H. R. Chen, X. M. Wen, W. F. Hsieh, and J. Tang, “A highly efficient graphene oxide absorber for Q-switched Nd:GdVO4 lasers,” Nanotechnology 22, 455203 (2011). [CrossRef]
  21. Z. B. Liu, X. Y. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett. 36, 3024–3026 (2011). [CrossRef]
  22. X. Li, G. Q. Li, S. Z. Zhao, X. M. Wang, L. Yin, H. Huang, and X. M. Ma, “Diode-pumped Nd:YVO4 laser passively Q-switched with graphene oxide spin coated on ITO substrate,” Laser Phys. 22, 673–677 (2012). [CrossRef]
  23. Y. Wang, Z. Qu, J. Liu, and Y. H. Tsang, “Graphene oxide absorbers for watt-level high-power passive mode-locked Nd:GdVO4 laser operating at 1  μm,” J. Lightwave Technol. 30, 3259–3262 (2012). [CrossRef]
  24. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett. 9, 15–19 (2012). [CrossRef]
  25. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q. H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express 20, 23653–23658 (2012). [CrossRef]
  26. C. Liu, C. Ye, Z. Luo, H. Cheng, D. Wu, Y. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2 μm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper,” Opt. Express 21, 204–209 (2013). [CrossRef]
  27. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91  μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012). [CrossRef]
  28. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010). [CrossRef]
  29. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004). [CrossRef]
  30. Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett. 93, 061114 (2008). [CrossRef]
  31. J. Du, S. M. Zhang, H. F. Li, Y. C. Meng, X. L. Li, and Y. P. Hao, “L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber,” Laser Phys. Lett. 9, 896–900 (2012). [CrossRef]
  32. J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys. 23, 075105 (2013). [CrossRef]
  33. B. K. Garside and T. K. Lim, “Laser mode locking using saturable absorbers,” J. Appl. Phys. 44, 2335–2342 (1973). [CrossRef]
  34. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012). [CrossRef]
  35. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997). [CrossRef]
  36. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E 72, 016616 (2005). [CrossRef]
  37. X. Wu, D. Y. Tang, X. N. Luan, and Q. Zhang, “Bound states of solitons in a fiber laser mode locked with carbon nanotube saturable absorber,” Opt. Commun. 284, 3615–3618 (2011). [CrossRef]
  38. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30, 1469–1477 (1994). [CrossRef]
  39. J. M. Soto-Crespo, V. V. Afanasjev, N. N. Akhmediev, and G. E. Town, “Dual-frequency pulses in fiber lasers,” Opt. Commun. 130, 245–248 (1996). [CrossRef]
  40. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17, 20707–20713 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited