OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 723–729

Non-steady-state photoelectromotive force and two-wave mixing in photorefractive crystals under frequency modulated illumination

M. Bryushinin, V. Kulikov, I. Sokolov, P. Delaye, and G. Pauliat  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 723-729 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000723


View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the excitation of non-steady-state photoelectromotive force and two-wave mixing signals using uniformly accelerated motion of the recording light pattern. Such illumination is created by linear frequency modulation of the interfering light beams. The pulse response is predicted theoretically and observed experimentally in GaAs and Bi12TiO20 crystals at λ=633nm. The evolution of the pulse shape versus sweep rate is demonstrated and explained in the frames of the developed theory. The application of the effects in laser Doppler velocimeters and accelerometers is discussed as well.

© 2014 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(190.5330) Nonlinear optics : Photorefractive optics
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 2, 2014
Manuscript Accepted: January 23, 2014
Published: March 7, 2014

Citation
M. Bryushinin, V. Kulikov, I. Sokolov, P. Delaye, and G. Pauliat, "Non-steady-state photoelectromotive force and two-wave mixing in photorefractive crystals under frequency modulated illumination," J. Opt. Soc. Am. B 31, 723-729 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications II, Vol. 62 of Topics in Applied Physics (Springer, 1989).
  2. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer, 1991).
  3. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990). [CrossRef]
  4. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991). [CrossRef]
  5. C. C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995). [CrossRef]
  6. C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997). [CrossRef]
  7. D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999). [CrossRef]
  8. P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000). [CrossRef]
  9. A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009). [CrossRef]
  10. A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011). [CrossRef]
  11. S. Mansurova, P. Moreno Zarate, P. Rodriguez, S. Stepanov, S. Köber, and K. Meerholz, “Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: application to detection of Doppler frequency shift,” Opt. Lett. 37, 383–385 (2012). [CrossRef]
  12. G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).
  13. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990). [CrossRef]
  14. I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993). [CrossRef]
  15. N. V. Kukhtarev, T. Kukhtareva, S. F. Lyuksyutov, M. A. Reagan, P. P. Banerjee, and P. Buchhave, “Running gratings in photoconductive materials,” J. Opt. Soc. Am. B 22, 1917–1922 (2005). [CrossRef]
  16. U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995). [CrossRef]
  17. J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981). [CrossRef]
  18. G. C. Valley, “Two-wave mixing with an applied field and a moving grating,” J. Opt. Soc. Am. B 1, 868–873 (1984). [CrossRef]
  19. P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985). [CrossRef]
  20. A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive crystals for the stabilization of the holographic setup,” Appl. Opt. 25, 2375–2381 (1986). [CrossRef]
  21. S. Bian and J. Frejlich, “Phase modulated two-wave mixing in crystals with long photocarrier lifetimes,” J. Mod. Opt. 43, 1185–1198 (1996). [CrossRef]
  22. H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999). [CrossRef]
  23. M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007). [CrossRef]
  24. T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010). [CrossRef]
  25. I. de Oliveira, A. A. Freschi, I. Fier, and J. Frejlich, “Stabilized photorefractive running holograms, with arbitrarily selected phase shift, for material characterization,” Opt. Mater. Express 2, 228–234 (2012). [CrossRef]
  26. G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).
  27. S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).
  28. N. A. Korneev and S. I. Stepanov, “Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption,” J. Appl. Phys. 74, 2736–2741 (1993). [CrossRef]
  29. N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995). [CrossRef]
  30. G. Pauliat and G. Roosen, “Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals,” Ferroelectrics 75, 281–294 (1987). [CrossRef]
  31. A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005). [CrossRef]
  32. R. V. Romashko, S. Di Girolamo, Y. N. Kulchin, and A. A. Kamshilin, “Photorefractive vectorial wave mixing in different geometries,” J. Opt. Soc. Am. B 27, 311–317 (2010). [CrossRef]
  33. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  34. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  35. I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited