OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 730–734

Optical isolation based on Faraday-like effect in periodically poled lithium niobate with odd number of domains tailed with a semi-domain

Jun Li, Lei Shi, and Xianfeng Chen  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 730-734 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (603 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe the phenomenon of the Faraday-like effect, which occurs in periodically poled lithium niobate with odd number of domains (OPPLN) by the transverse electro-optic (EO) effect under the quasi-phase-matching condition. In this case, light rotates in the reverse sense during the forward and the backward path, and OPPLN shows a nonreciprocal process that is similar to the magneto-optical Faraday effect, which has served as a routine method for achieving optical isolation. Therefore, a feasible scheme for an EO optical isolator based on the Faraday-like effect by adding an additional semi-domain to OPPLN is also proposed in this article.

© 2014 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.2090) Optical devices : Electro-optical devices
(230.2240) Optical devices : Faraday effect

ToC Category:
Optical Devices

Original Manuscript: December 13, 2013
Manuscript Accepted: February 6, 2014
Published: March 7, 2014

Jun Li, Lei Shi, and Xianfeng Chen, "Optical isolation based on Faraday-like effect in periodically poled lithium niobate with odd number of domains tailed with a semi-domain," J. Opt. Soc. Am. B 31, 730-734 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005). [CrossRef]
  2. S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).
  3. G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012). [CrossRef]
  4. J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007). [CrossRef]
  5. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000). [CrossRef]
  6. H. Lee, “Optical isolator using acousto-optic and Faraday effects,” Appl. Opt. 26, 969–970 (1987). [CrossRef]
  7. J. P. Castéra and G. Hepner, “Isolator in integrated optics using Faraday and Cotton-Mouton effects,” Appl. Opt. 16, 2031–2033 (1977). [CrossRef]
  8. L. J. Aplet and J. W. Carson, “A Faraday effect optical isolator,” Appl. Opt. 3, 544–545 (1964). [CrossRef]
  9. G. A. Laguna, “Source noise reduction in diode laser spectroscopy using the Faraday effect,” Appl. Opt. 23, 2155–2158 (1984). [CrossRef]
  10. A. L. Merchant, S. Händel, T. P. Wiles, S. A. Hopkins, C. S. Adams, and S. L. Cornish, “Off-resonance laser frequency stabilization using the Faraday effect,” Opt. Lett. 36, 64–66 (2011). [CrossRef]
  11. L. Shi, L. H. Tian, and X. F. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112, 073103 (2012). [CrossRef]
  12. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999). [CrossRef]
  13. G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14, 5535–5540 (2006). [CrossRef]
  14. W. J. Lu, Y. P. Chen, L. H. Miu, X. F. Chen, Y. X. Xia, and X. L. Zeng, “All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions,” Opt. Express 16, 355–361 (2008). [CrossRef]
  15. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000). [CrossRef]
  16. H. S. Bernett and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137, A448–A461 (1965). [CrossRef]
  17. X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011). [CrossRef]
  18. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009). [CrossRef]
  19. Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011). [CrossRef]
  20. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001). [CrossRef]
  21. M. Soljacic, C. Y. Luo, J. D. Joannopoulos, and S. H. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited