OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 735–741

Polarization conversion of reflected electromagnetic wave from topological insulator

Fen Liu, Jingping Xu, and Yaping Yang  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 735-741 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the special electromagnetic properties of a 3D strong topological insulator (TI), we discuss, theoretically, the reflection of electromagnetic wave at the interface between a dielectric and a TI, and focus on the polarization conversion between the incident field and reflected field. Two cases, linear polarization and elliptical polarization at oblique incidence are considered. We derive the conditions required for the complete polarization conversion from incident s polarization into reflected p polarization, and vice versa. Furthermore, elliptical polarization incidence also can be modulated to linear or circular polarization after reflection, under special conditions, and the corresponding reflectivity can approach 1. All these special polarization behaviors originate from the intrinsic topological magnetoelectric coupling response in TI. This work provides promising applications of TIs on polarized devices and the polarization splitters.

© 2014 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Optics at Surfaces

Original Manuscript: September 30, 2013
Revised Manuscript: February 11, 2014
Manuscript Accepted: February 11, 2014
Published: March 7, 2014

Fen Liu, Jingping Xu, and Yaping Yang, "Polarization conversion of reflected electromagnetic wave from topological insulator," J. Opt. Soc. Am. B 31, 735-741 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Levy, “The on-chip integration of magneto optic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002). [CrossRef]
  2. K. Smith and A. A. Chabanov, “Enhanced transmission and nonreciprocal properties of a ferromagnetic metal layer in one-dimensional photonic crystals,” Integr. Ferroelectr. 131, 66–71 (2011). [CrossRef]
  3. V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010). [CrossRef]
  4. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007). [CrossRef]
  5. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008). [CrossRef]
  6. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100, 051909 (2012). [CrossRef]
  7. C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005). [CrossRef]
  8. L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007). [CrossRef]
  9. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008). [CrossRef]
  10. M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009). [CrossRef]
  11. J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010). [CrossRef]
  12. W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010). [CrossRef]
  13. Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011). [CrossRef]
  14. A. G. Grushin and A. Cortijo, “Tunable Casimir repulsion with three-dimensional topological insulators,” Phys. Rev. Lett. 106, 020403 (2011). [CrossRef]
  15. W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013). [CrossRef]
  16. F. Liu, J. Xu, G. Song, and Y. Yang, “Goos-Hänchen and Imbert-Fedorov shifts at the interface of ordinary dielectric and topological insulator,” J. Opt. Soc. Am. B 30, 1167–1172 (2013). [CrossRef]
  17. Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005). [CrossRef]
  18. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  19. M. Born, E. Wolf, and A. B. E. Bhatic, Principles of Optics, 7th ed. (Cambridge University, 1993).
  20. J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008). [CrossRef]
  21. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  22. C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited