OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 742–747

Experimental verification of the Breit–Rabi formula in the case of clock transition by using the spectroscopy method

Bin Wu, Zhaoying Wang, Bing Cheng, Qiyu Wang, Aopeng Xu, Delong Kong, and Qiang Lin  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 742-747 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000742


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, the Breit–Rabi formula has been verified experimentally by precisely measuring the quadratic Zeeman coefficient of the ground-state clock transition of Rb87. The resonant spectra of the clock transition are obtained by using both microwave and Raman pulses to drive the transition. The line widths are optimized to be 120 Hz for microwave spectra and 300 Hz for Raman spectra so that the resolution of measurement can be increased. In our experiment, the uncertainty of the measured quadratic Zeeman coefficient is better than 1×108HzT2. The coefficient is demonstrated to be (575.09±0.48)×108HzT2 for the microwave spectroscopy and (574.59±0.89)×108HzT2 for the Raman spectroscopy which agrees well with the calculated result of 575.15×108HzT2.

© 2014 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(020.7490) Atomic and molecular physics : Zeeman effect
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: October 8, 2013
Revised Manuscript: February 14, 2014
Manuscript Accepted: February 15, 2014
Published: March 12, 2014

Citation
Bin Wu, Zhaoying Wang, Bing Cheng, Qiyu Wang, Aopeng Xu, Delong Kong, and Qiang Lin, "Experimental verification of the Breit–Rabi formula in the case of clock transition by using the spectroscopy method," J. Opt. Soc. Am. B 31, 742-747 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia 49, 82–87 (2012). [CrossRef]
  2. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, L. Ruoxin, K. Gibble, A. Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 391–409 (2012). [CrossRef]
  3. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001). [CrossRef]
  4. A. Bertoldi, G. Lamporesi, L. Cacciapuoti, M. de Angelis, M. Fattori, T. Petelski, A. Peters, M. Prevedelli, J. Stuhler, and G. M. Tino, “Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G,” Eur. Phys. J. D 40, 271–279 (2006). [CrossRef]
  5. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Borde, and A. Landragin, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006). [CrossRef]
  6. A. Gauguet, B. Canuel, T. Lévèque, W. Chaibi, and A. Landragin, “Characterization and limits of a cold-atom Sagnac interferometer,” Phys. Rev. A 80, 063604 (2009). [CrossRef]
  7. Y. Ovchinnikov and G. Marra, “Accurate rubidium atomic fountain frequency standard,” Metrologia 48, 87–100 (2011). [CrossRef]
  8. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002). [CrossRef]
  9. H. Müller, S. W. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon-momentum-transfer beam splitters,” Phys. Rev. Lett. 100, 180405 (2008). [CrossRef]
  10. J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, “Large area light-pulse atom interferometry,” Phys. Rev. Lett. 85, 4498–4501 (2000). [CrossRef]
  11. G. Breit and I. I. Rabi, “Measurement of nuclear spin,” Phys. Rev. 38, 2082–2083 (1931). [CrossRef]
  12. C. W. White, W. M. Hughes, G. S. Hayne, and H. G. Robinson, “Determination of g-factor ratios for free Rb85 and Rb87 atoms,” Phys. Rev. 174, 23–32 (1968). [CrossRef]
  13. I. Chan, B. Barrett, and A. Kumarakrishnan, “Precise determination of atomic g-factor ratios from a dual isotope magneto-optical trap,” Phys. Rev. A 84, 032509 (2011). [CrossRef]
  14. P. R. Hemmer, G. P. Ontai, and S. Ezekiel, “Precision studies of stimulated-resonance Raman interactions in an atomic beam,” J. Opt. Soc. Am. B 3, 219–230 (1986). [CrossRef]
  15. R. B. Li, L. Zhou, J. Wang, and M. S. Zhan, “Measurement of the quadratic Zeeman shift of 85Rb hyperfine sublevels using stimulated Raman transitions,” Opt. Commun. 282, 1340–1344 (2009). [CrossRef]
  16. K. Numazaki, H. Imai, and A. Morinaga, “Measurement of the second-order Zeeman effect on the sodium clock transition in the weak-magnetic-field region using the scalar Aharonov–Bohm phase,” Phys. Rev. A 81, 032124 (2010). [CrossRef]
  17. C. Y. Shi, R. Wei, Z. C. Zhou, D. S. Lv, T. Li, and Y. Z. Wang, “Magnetic field measurement on 87Rb atomic fountain clock,” Chin. Opt. Lett 8, 549–552 (2010). [CrossRef]
  18. Z. C. Zhou, R. Wei, C. Y. Shi, T. Li, and Y. Z. Wang, “Magnetic field measurement based on a stimulated two-photon Raman transition,” Chin. Phys. B 20, 034206 (2011). [CrossRef]
  19. Z. K. Hu, X. C. Duan, M. K. Zhou, B. L. Sun, J. B. Zhao, M. M. Huang, and J. Luo, “Simultaneous differential measurement of a magnetic-field gradient by atom interferometry using double fountains,” Phys. Rev. A 84, 013620 (2011). [CrossRef]
  20. M. K. Zhou, Z. K. Hu, X. C. Duan, B. L. Sun, J. B. Zhao, and J. Luo, “Precisely mapping the magnetic field gradient in vacuum with an atom interferometer,” Phys. Rev. A 82, 061602 (2010). [CrossRef]
  21. L. Marmet and M. Gertsvolf, “Evaluation of NRC-FCs1: mapping the C-field using the Larmor frequency,” in Proceedings of the 2010 IEEE International Frequency Control Symposium (IEEE, 2010), pp. 312–317.
  22. D. A. Steck, “Alkali D line data,” Rubidium 87 D Line Data, 2010, http://steck.us/alkalidata .
  23. K. Moler, D. S. Weiss, M. Kasevich, and C. Steven, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342–348 (1992). [CrossRef]
  24. X. L. Wang, B. Cheng, B. Wu, Z. Y. Wang, and Q. Lin, “A simplified cold atom source for 3-D MOT loading,” Chin. Phys. Lett 28, 053701 (2011). [CrossRef]
  25. X. L. Wang, T. J. Tao, B. Cheng, B. Wu, Y. F. Xu, Z. Y. Wang, and Q. Lin, “A digital phase lock loop for an external cavity diode laser,” Chin. Phys. Lett 28, 084214 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited