OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 755–764

Speed-dependent resolution analysis of ultrafast laser-scanning fluorescence microscopy

Antony C. S. Chan, Terence T. W. Wong, Kenneth K. Y. Wong, Edmund Y. Lam, and Kevin K. Tsia  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 755-764 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The image resolution of an aberration-corrected laser-scanning fluorescence microscopy (LSFM) system, like all other classical optical imaging modalities, is ultimately governed by diffraction limit and can be, in practice, influenced by the noise. However, consideration of only these two parameters is not adequate for LSFM with ultrafast laser-scanning, in which the dwell time of each resolvable image point becomes comparable with the fluorescence lifetime. In view of the continuing demand for faster LSFM, we here revisit the theoretical framework of LSFM and investigate the impact of the scanning speed on the resolution. In particular, we identify there are different speed regimes and excitation conditions in which the resolution is primarily limited by diffraction limit, fluorescence lifetime, or intrinsic noise. Our model also suggests that the speed of the current laser-scanning technologies is still at least an order of magnitude below the limit (sub-MHz to MHz), at which the diffraction-limited resolution can be preserved. We thus anticipate that the present study can provide new insight for practical designs and implementation of ultrafast LSFM, based on emerging laser-scanning techniques, e.g., ultrafast wavelength-swept sources, or optical time-stretch.

© 2014 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.7160) Medical optics and biotechnology : Ultrafast technology
(180.2520) Microscopy : Fluorescence microscopy
(180.5810) Microscopy : Scanning microscopy

ToC Category:

Original Manuscript: December 5, 2013
Revised Manuscript: January 30, 2014
Manuscript Accepted: February 1, 2014
Published: March 12, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Antony C. S. Chan, Terence T. W. Wong, Kenneth K. Y. Wong, Edmund Y. Lam, and Kevin K. Tsia, "Speed-dependent resolution analysis of ultrafast laser-scanning fluorescence microscopy," J. Opt. Soc. Am. B 31, 755-764 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 20–42.
  2. H. R. Petty, “High speed microscopy in biomedical research,” Opt. Photon. News 15(1), 40–45 (2004). [CrossRef]
  3. K. H. Kim, C. Buehler, and P. T. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999). [CrossRef]
  4. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008). [CrossRef]
  5. J. M. Larson, S. A. Schwartz, and M. W. Davidson, “Resonant scanning in laser confocal microscopy,” , (Nikon Microscopy, 2000).
  6. S. Choi, P. Kim, R. Boutilier, M. Kim, Y. Lee, and H. Lee, “Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second,” Opt. Express 21, 23611–23618 (2013). [CrossRef]
  7. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  8. V. Bansal, S. Patel, and P. Saggau, A High-Speed Confocal Laser-Scanning Microscope Based on Acousto-Optic Deflectors and a Digital Micromirror Device (Institute of Electrical and Electronics Engineers, 2003), pp. 2124–2127.
  9. M. Strupler, E. D. Montigny, D. Morneau, and C. Boudoux, “Rapid spectrally encoded fluorescence imaging using a wavelength-swept source,” Opt. Lett. 35, 1737–1739 (2010). [CrossRef]
  10. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013). [CrossRef]
  11. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009). [CrossRef]
  12. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012). [CrossRef]
  13. Y. Qiu, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20, 24115–24123 (2012). [CrossRef]
  14. T. T. Wong, A. K. Lau, K. K. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1  μm,” Opt. Lett. 37, 3330–3332 (2012). [CrossRef]
  15. C. Zhang, Y. Qiu, R. Zhu, K. K. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011). [CrossRef]
  16. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013). [CrossRef]
  17. P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999). [CrossRef]
  18. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009). [CrossRef]
  19. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007). [CrossRef]
  20. E. Stelzer, “Contrast, resolution, pixelation, dynamic range, and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998). [CrossRef]
  21. O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. 7, 522–526 (1990). [CrossRef]
  22. H. R. Petty, “Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70, 687–709 (2007). [CrossRef]
  23. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. 20, 368–379 (2003). [CrossRef]
  24. Q. Zhao, I. T. Young, and J. G. S. de Jong, “Photon budget analysis for fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 16, 086007 (2011). [CrossRef]
  25. D. Semwogerere and E. R. Weeks, Confocal Microscopy (Encyclopedia of Biomaterials and Biomedical Engineering, 2005).
  26. E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005). [CrossRef]
  27. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819–1829 (2007). [CrossRef]
  28. K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994). [CrossRef]
  29. J. W. Daily, “Saturation effects in laser induced fluorescence spectroscopy,” Appl. Opt. 16, 568–571 (1977). [CrossRef]
  30. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012). [CrossRef]
  31. S. C. Schlachter, D. Kang, M. J. Gora, P. Vacas-Jacques, T. Wu, R. W. Carruth, E. J. Wilsterman, B. E. Bouma, K. Woods, and G. J. Tearney, “Spectrally encoded confocal microscopy of esophageal tissues at 100  kHz line rate,” Biomed. Opt. Express 4, 1636–1645 (2013). [CrossRef]
  32. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050  nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007). [CrossRef]
  33. H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4, 1236–1254 (2013). [CrossRef]
  34. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz oct: high quality 3D imaging at 20 million a-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010). [CrossRef]
  35. Y. Yuan, T. Papaioannou, and Q. Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33, 791–793 (2008). [CrossRef]
  36. R. W. K. Leung, S.-C. A. Yeh, and Q. Fang, “Effects of incomplete decay in fluorescence lifetime estimation,” Biomed. Opt. Express 2, 2517–2531 (2011). [CrossRef]
  37. R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006). [CrossRef]
  38. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier-domain-mode locked laser,” Opt. Express 15, 6251–6267 (2007). [CrossRef]
  39. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010). [CrossRef]
  40. G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004). [CrossRef]
  41. R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited