OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 771–779

Slow light in ellipse-hole photonic crystal line-defect waveguide with high normalized delay bandwidth product

Vali Varmazyari, Hamidreza Habibiyan, and Hassan Ghafoorifard  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 771-779 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000771


View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a novel flatband slow light device with low group velocity dispersion (GVD) is presented in an ellipse-hole photonic crystal (PC) line-defect waveguide. Utilizing dispersion engineering in the proposed structure, normalized delay-bandwidth product (NDBP) under a constant group index criterion is significantly improved. A step-by-step optimization process is done on the adjacent rows to the waveguide, which are filled by silica. For optimum case a high NDBP of 0.461 with a group index of 41.86 and a bandwidth of 17.06 nm is obtained by three-dimensional plane-wave expansion method. To the best of our knowledge, this NDBP is one of the highest values in PC waveguides reported to date, in which the group index value is relatively high. The numerical results show that GVD is negligible over a broad wavelength range. Also, optical pulse propagation through the waveguide is performed based on the finite-difference time-domain method. The results indicate that the shape of output pulse experiences a broadening of 2.1% compared with the incoming pulse after traveling a distance of 30a.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(260.2030) Physical optics : Dispersion
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: December 9, 2013
Revised Manuscript: January 29, 2014
Manuscript Accepted: January 29, 2014
Published: March 12, 2014

Citation
Vali Varmazyari, Hamidreza Habibiyan, and Hassan Ghafoorifard, "Slow light in ellipse-hole photonic crystal line-defect waveguide with high normalized delay bandwidth product," J. Opt. Soc. Am. B 31, 771-779 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-771


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  2. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]
  4. P. Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004). [CrossRef]
  5. H. Su and Sh. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett. 31, 271–273 (2006). [CrossRef]
  6. T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009). [CrossRef]
  7. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008). [CrossRef]
  8. D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012). [CrossRef]
  9. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009). [CrossRef]
  10. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010). [CrossRef]
  11. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007). [CrossRef]
  12. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007). [CrossRef]
  13. H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012). [CrossRef]
  14. M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008). [CrossRef]
  15. V. Varmazyari, H. Habibiyan, and H. Ghafoorifard, “All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides,” Appl. Opt. 52, 6497–6505 (2013). [CrossRef]
  16. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005). [CrossRef]
  17. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010). [CrossRef]
  18. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  19. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010). [CrossRef]
  20. J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008). [CrossRef]
  21. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008). [CrossRef]
  22. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013). [CrossRef]
  23. N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012). [CrossRef]
  24. Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013). [CrossRef]
  25. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011). [CrossRef]
  26. M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007). [CrossRef]
  27. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007). [CrossRef]
  28. S. Rawal, R. K. Sinha, and R. De La Rue, “Slow light propagation in liquid-crystal infiltrated silicon-on-insulator photonic crystal channel waveguides,” J. Lightwave Technol. 28, 2560–2571 (2010). [CrossRef]
  29. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  30. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007). [CrossRef]
  31. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  32. A. Yu. Petrova and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  33. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009). [CrossRef]
  34. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  35. J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010). [CrossRef]
  36. K. Üstün and H. Kurt, “Slow light structure with enhanced delay-bandwidth product,” J. Opt. Soc. Am. B 29, 2403–2409 (2012). [CrossRef]
  37. M. Hosseinpour, M. Ebnali-Heidari, M. Kamali, and H. Emami, “Optofluidic photonic crystal slow light coupler,” J. Opt. Soc. Am. B 30, 717–722 (2013). [CrossRef]
  38. M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006). [CrossRef]
  39. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012). [CrossRef]
  40. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008). [CrossRef]
  41. M. Loňcar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  42. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited