OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 788–797

Single and multiple filamentation of multi-terawatt CO2-laser pulses in air: numerical simulations

Y. E. Geints and A. A. Zemlyanov  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 788-797 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically simulated the nonlinear propagation of high-power subpicosecond laser radiation at 10.6 μm carrier wavelength in air under conditions of pulse Kerr self-focusing and single and multiple filamentation. For the first time, to the best of our knowledge, we show that in contrast to the well-known femtosecond pulse filamentation in the near-infrared domain (800 nm), the self-action of mid-infrared radiation is characterized by the formation of millimeter-wide filaments accompanied by nearly continuous along the propagation direction and elongated plasma columns. The physical cause is the change of the air ionization regime by the CO2-laser pulse in favor of impact ionization and electron avalanche development. This alters the character of plasma influence on the laser radiation by enhancing the role of physical processes attributed to the liberated hot electrons.

© 2014 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(190.5940) Nonlinear optics : Self-action effects
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5210) Physical optics : Photoionization

ToC Category:
Nonlinear Optics

Original Manuscript: January 14, 2014
Revised Manuscript: February 12, 2014
Manuscript Accepted: February 12, 2014
Published: March 13, 2014

Y. E. Geints and A. A. Zemlyanov, "Single and multiple filamentation of multi-terawatt CO2-laser pulses in air: numerical simulations," J. Opt. Soc. Am. B 31, 788-797 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15, 1479–1493 (1976). [CrossRef]
  2. V. E. Zuev, A. A. Zemlyanov, Y. D. Kopytin, and A. V. Kuzikovskii, High-Power Laser Radiation in Atmospheric Aerosols (Reidel, 1984).
  3. B. G. Bravy, Y. A. Chernyshev, V. M. Gordienko, E. F. Makarov, V. Y. Panchenko, V. T. Platonenko, and G. K. Vasil’ev, “Multi-terawatt picoseconds 10  μm CO2 laser system: design and parameters’ control,” Opt. Express 20, 25536–25544 (2012). [CrossRef]
  4. M. N. Polyanskiy and M. Babzien, “Ultrashort pulses,” in CO2 Laser—Optimization and Application, D. C. Dumitras, ed. (InTech, 2012), pp. 139–162.
  5. D. Haberberger, S. Tochitsky, and C. Joshi, “Fifteen terawatt picosecond CO2 laser system,” Opt. Express 18, 17865–17875 (2010). [CrossRef]
  6. M. N. Polyanskiy, M. Babzien, I. Pogorelsky, and V. Yakimenko, “Ultrashort-pulse CO2 lasers: ready for the race to petawatt?” Proc. SPIE 8677, 86770G (2013). [CrossRef]
  7. V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, “Self-action of a high-power 10  μm laser radiation in gases: control of the pulse duration and generation of hot electrons,” Quantum Electron. 39, 663–668 (2009). [CrossRef]
  8. A. Couairon and A. Myzyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007). [CrossRef]
  9. S. Uchida, Y. Shimada, H. Yasuda, S. Motokoshi, C. Yamanaka, T. Yamanaka, Z. Kawasaki, and K. Tsubakimoto, “Laser-triggered lightning in field experiments,” J. Opt. Technol. 66, 199–202 (1999). [CrossRef]
  10. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, “Kilometer-range non-linear propagation of femtosecond laser pulses,” Phys. Rev. E 69, 036607 (2004). [CrossRef]
  11. V. V. Apollonov and N. V. Pletnev, “Formation of extended conducting channels in atmosphere,” Quantum Electron. 42, 130–139 (2012). [CrossRef]
  12. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y.-B. André, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste, “White-light filaments for atmospheric analysis,” Science 301, 61–64 (2003). [CrossRef]
  13. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly-ionized, optically-transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). [CrossRef]
  14. B. Shim, S. E. Schrauth, and A. L. Gaeta, “Filamentation in air with ultrashort mid-infrared pulses,” Opt. Express 19, 9118–9126 (2011). [CrossRef]
  15. L. Berge, J. Rolle, and C. Kohler, “Enhanced self-compression of mid-infrared laser filaments in argon,” Phys. Rev. A 88, 023816 (2013). [CrossRef]
  16. D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “Mid-infrared laser filamentation in molecular gases,” Opt. Lett. 38, 3194–3196 (2013). [CrossRef]
  17. V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39, 205–228 (2009). [CrossRef]
  18. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  19. Y. P. Raizer, Gas Discharge Physics (Springer, 1991).
  20. L. V. Keldysh, “Ionization in the field of strong electromagnetic wave,” Sov. Phys. JETP 20, 1307 (1965).
  21. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in alternating electric field,” Zh. Teor. Eksp. Fiz. 50, 1393–1397 (1966).
  22. V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory),” Phys. Usp. 47, 855–885 (2004). [CrossRef]
  23. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high-order Kerr refractive index of major air components: erratum,” Opt. Express 18, 3011–3012 (2010). [CrossRef]
  24. W. Ettoumi, Y. Petit, J. Kasparian, and J.-P. Wolf, “Generalized Miller formulae,” Opt. Express 18, 6613–6620 (2010). [CrossRef]
  25. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, “Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field,” J. Exp. Theor. Phys. 116, 372–380 (2013). [CrossRef]
  26. C. Kohler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Berge, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013). [CrossRef]
  27. A. Vinçotte and L. Bergé, “χ(5) susceptibility stabilizes the propagation of ultrashort laser pulses in air,” Phys. Rev. A 70, 061802(R) (2004). [CrossRef]
  28. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998). [CrossRef]
  29. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: a pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998). [CrossRef]
  30. J.-F. Daigle, O. Kosareva, N. Panov, T.-J. Wang, S. Hosseini, S. Yuanc, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization-free low divergence beams,” Opt. Commun. 284, 3601–3606 (2011). [CrossRef]
  31. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1997).
  32. G. Paunescu, G. Spindler, W. Riede, H. Schröder, and A. Giesen, “Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence,” Appl. Phys. B 96, 175–183 (2009). [CrossRef]
  33. E. P. Silaeva, S. A. Shlenov, and V. P. Kandidov, “Multifilamentation of high-power femtosecond laser pulse in turbulent atmosphere with aerosol,” Appl. Phys. B 101, 393–401 (2010). [CrossRef]
  34. L. Bergé, S. Skupin, F. Lederer, G. Méjean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited