OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 816–820

Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system

Dengkuan Liu, Lixing You, Yuhao He, Chaolin Lv, Sijing Chen, Ling Zhang, Zhen Wang, and Xiaoming Xie  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 816-820 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photon-number-resolving (PNR) detection is a prerequisite for many important quantum optics applications. By using a four-channel superconducting nanowire single-photon detection system incorporating the photon multiport network technique, PNR detection of up to four photons was realized. The amplitude of the output pulse is proportional to the detected photon number. Using two channels of the system, the Poisson distribution of photon number in the faint pulsed laser was verified. The theoretical counts of the two-photon response were analyzed as a function of the mean photon number per pulse. The measurement results matched well with the theoretical calculations according to the Poisson distribution.

© 2014 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors
(270.5290) Quantum optics : Photon statistics
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: September 11, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: January 8, 2014
Published: March 17, 2014

Dengkuan Liu, Lixing You, Yuhao He, Chaolin Lv, Sijing Chen, Ling Zhang, Zhen Wang, and Xiaoming Xie, "Photon-number resolving and distribution verification using a multichannel superconducting nanowire single-photon detection system," J. Opt. Soc. Am. B 31, 816-820 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008). [CrossRef]
  3. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011). [CrossRef]
  4. P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).
  5. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008). [CrossRef]
  6. G. Wu, Y. Jian, E. Wu, and H. P. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009). [CrossRef]
  7. O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004). [CrossRef]
  8. J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003). [CrossRef]
  9. A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett. 69, 3938–3940 (1996). [CrossRef]
  10. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001). [CrossRef]
  11. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013). [CrossRef]
  12. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013). [CrossRef]
  13. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013). [CrossRef]
  14. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012). [CrossRef]
  15. S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550  nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52, 3241–3245 (2013). [CrossRef]
  16. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008). [CrossRef]
  17. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009). [CrossRef]
  18. S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).
  19. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012). [CrossRef]
  20. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012). [CrossRef]
  21. T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1  W Gifford-McMahon cryocooler,” Opt. Lett. 37, 2982–2984 (2012). [CrossRef]
  22. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007). [CrossRef]
  23. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002). [CrossRef]
  24. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010). [CrossRef]
  25. M. Hofherr, O. Wetzstein, S. Engert, T. Ortlepp, B. Berg, K. Ilin, D. Henrich, R. Stolz, H. Toepfer, H. G. Meyer, and M. Siegel, “Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit,” Opt. Express 20, 28683–28697 (2012). [CrossRef]
  26. D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012). [CrossRef]
  27. For example, if we want to set the input photon to be 10  M per second, we set the light power to be − 49.92  dBm first, and then adjust the attenuator to add 40  dB attenuation to the input light.
  28. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006). [CrossRef]
  29. R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007). [CrossRef]
  30. M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).
  31. Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited