OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 827–832

One-step achievement of robust multipartite Greenberger–Horne–Zeilinger state and controlled-phase gate via Rydberg interaction

Xiao-Qiang Shao, Tai-Yu Zheng, C. H. Oh, and Shou Zhang  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 827-832 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000827


View Full Text Article

Acrobat PDF (629 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a proposal for generation of a robust tripartite Greenberger–Horne–Zeilinger state among three individual neutral Rydberg atoms. By modulating the relation between two-photon detuning and Rydberg interaction strength Uij(r), an effective Raman coupling is obtained between the hyperfine ground states |F=2,M=2〉 of three Rb87 atoms and the Rydberg states |rrr〉 via the third-order perturbation theory. This method is also capable of implementing a three-qubit controlled-phase gate with each qubit encoded into the hyperfine ground states |F=1,M=1〉 and |F=2,M=2〉. As an extension, we generalize our scheme to the case of the multipartite GHZ state and quantum gate in virtue of high-order perturbation theory.

© 2014 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 23, 2013
Revised Manuscript: February 6, 2014
Manuscript Accepted: February 16, 2014
Published: March 19, 2014

Citation
Xiao-Qiang Shao, Tai-Yu Zheng, C. H. Oh, and Shou Zhang, "One-step achievement of robust multipartite Greenberger–Horne–Zeilinger state and controlled-phase gate via Rydberg interaction," J. Opt. Soc. Am. B 31, 827-832 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-827


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  2. D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 69–72.
  3. N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, Bell states and maximally entangled states for n qubits,” Phys. Lett. A 246, 1–6 (1998). [CrossRef]
  4. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  5. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  6. F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005). [CrossRef]
  7. X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006). [CrossRef]
  8. C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005). [CrossRef]
  9. Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).
  10. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005). [CrossRef]
  11. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001). [CrossRef]
  12. S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005). [CrossRef]
  13. Z. Y. Xue and Z. D. Wang, “Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity,” Phys. Rev. A 75, 064303 (2007). [CrossRef]
  14. Z. Y. Xue, “Fast geometric gate operation of superconducting charge qubits in circuit QED,” Quantum Inf. Process. 11, 1381 (2012). [CrossRef]
  15. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  16. L. Jin and Z. Song, “Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009). [CrossRef]
  17. S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011). [CrossRef]
  18. C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012). [CrossRef]
  19. D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995). [CrossRef]
  20. C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005). [CrossRef]
  21. C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006). [CrossRef]
  22. T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009). [CrossRef]
  23. V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012). [CrossRef]
  24. A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012). [CrossRef]
  25. Y. Q. Zhang, S. Zhang, K. H. Yeon, and S. C. Yu, “One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator,” J. Opt. Soc. Am. B 29, 300–304 (2012). [CrossRef]
  26. X. Q. Shao, T. Y. Zheng, and S. Zhang, “Robust Toffoli gate originating from Stark shifts,” J. Opt. Soc. Am. B 29, 1203–1207 (2012). [CrossRef]
  27. X. Q. Shao, T. Y. Zheng, and S. Zhang, “Fast synthesis of the Fredkin gate via quantum Zeno dynamics,” Quantum Inf. Process. 11, 1797–1808 (2012). [CrossRef]
  28. X. Q. Shao, T. Y. Zheng, X. L. Feng, C. H. Oh, and S. Zhang, “One-step implementation of the genuine Fredkin gate in high-Q coupled three-cavity arrays,” J. Opt. Soc. Am. B 31, 697–703 (2014).
  29. S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013). [CrossRef]
  30. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001). [CrossRef]
  31. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998). [CrossRef]
  32. M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158–166 (2005). [CrossRef]
  33. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]
  34. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000). [CrossRef]
  35. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009). [CrossRef]
  36. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010). [CrossRef]
  37. A. Chen, “Implementation of Deutsch-Jozsa algorithm and determination of value of function via Rydberg blockade,” Opt. Express 19, 2037–2045 (2011). [CrossRef]
  38. H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010). [CrossRef]
  39. Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010). [CrossRef]
  40. D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008). [CrossRef]
  41. M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009). [CrossRef]
  42. M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102, 240502 (2009). [CrossRef]
  43. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010). [CrossRef]
  44. H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010). [CrossRef]
  45. X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010). [CrossRef]
  46. M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).
  47. D. D. B. Rao and K. Mølmer, “Robust Rydberg interaction gates with adiabatic passage,” arXiv:1311.5147 (2013).
  48. V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012). [CrossRef]
  49. D. A. Steck, “Rubidium 87 d line data” (Open Publication, 2001), available online at http://steck.us/alkalidata (revision 2.1.2, 12 August 2009).
  50. Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited