OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 842–850

Average cavity description of self-similar lasers

Victor G. Bucklew, William H. Renninger, Frank W. Wise, and Clifford R. Pollock  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 842-850 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000842


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A purely analytical model treating an average cavity description of a passive self-similar optical resonator is developed. The model introduces an energy area theorem which provides an analytical framework for understanding energy scalability in passive self-similar systems. A qualitative link between self-similar pulses in fiber and solid state systems is explained by the analytical model through the nature of the saturable characteristics of the saturable absorber. The derived expressions for the field amplitude and chirp parameter of the pulse match well with simulation and offer insight into the mechanics of passive self-similar resonator design.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 13, 2013
Revised Manuscript: February 13, 2014
Manuscript Accepted: February 19, 2014
Published: March 21, 2014

Citation
Victor G. Bucklew, William H. Renninger, Frank W. Wise, and Clifford R. Pollock, "Average cavity description of self-similar lasers," J. Opt. Soc. Am. B 31, 842-850 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Renninger, A. Chong, and F. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012). [CrossRef]
  2. F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008). [CrossRef]
  3. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  4. S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997). [CrossRef]
  5. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef]
  6. V. G. Bucklew and C. R. Pollock, “Realizing self-similar pulses in solid-state laser systems,” J. Opt. Soc. Am. B 29, 3027–3033 (2012). [CrossRef]
  7. F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004). [CrossRef]
  8. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252–8262 (2007). [CrossRef]
  9. C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011). [CrossRef]
  10. C. Antonelli, J. Chen, and F. X. Kartner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007). [CrossRef]
  11. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  12. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media (differential equation solution for plane self focusing and one dimensional self modulation of waves interacting in nonlinear media),” Sov. Phys. 34, 62–69 (1972).
  13. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  14. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005). [CrossRef]
  15. V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006). [CrossRef]
  16. V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009). [CrossRef]
  17. V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010). [CrossRef]
  18. V. L. Kalashnikov, Solid State Laser (In Tech, 2012).
  19. B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010). [CrossRef]
  20. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010). [CrossRef]
  21. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010). [CrossRef]
  22. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001). [CrossRef]
  23. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993). [CrossRef]
  24. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000). [CrossRef]
  25. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010). [CrossRef]
  26. F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), paper. MD8.
  27. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10  nJ,” Opt. Lett. 30, 1888–1890 (2005). [CrossRef]
  28. F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited