OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 851–859

General approach for the sensitivity analysis and optimization of integrated optical evanescent-wave sensors

Camille Delezoide, Isabelle Ledoux-Rak, and Chi Thanh Nguyen  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 851-859 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000851


View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optimization of integrated optical evanescent-wave sensors includes two parts. For optimal performance, we require waveguides with both maximal sensitivity to the measurand—the quantity intended to be measured—and minimal sensitivity to perturbations. In this context, fully numerical approaches are extremely powerful but demand huge computer resources. We address this issue by introducing a general and efficient approach, based on the formal derivation of analytical dispersion equations, to express and evaluate all waveguide sensitivities. In particular, we apply this approach to rectangular waveguides and discuss its accuracy and its use within sensitivity optimization procedures.

© 2014 Optical Society of America

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(130.0130) Integrated optics : Integrated optics
(130.6010) Integrated optics : Sensors
(160.6840) Materials : Thermo-optical materials
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: September 5, 2013
Revised Manuscript: November 30, 2013
Manuscript Accepted: January 10, 2014
Published: March 26, 2014

Citation
Camille Delezoide, Isabelle Ledoux-Rak, and Chi Thanh Nguyen, "General approach for the sensitivity analysis and optimization of integrated optical evanescent-wave sensors," J. Opt. Soc. Am. B 31, 851-859 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-851


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).
  2. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-based optical waveguides: materials, processing, and devices,” Adv. Mater. 14, 1339–1365 (2002). [CrossRef]
  3. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969). [CrossRef]
  4. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977). [CrossRef]
  5. A. Kumar, K. Thyagarajan, and A. K. Ghatak, “Analysis of rectangular-core dielectric waveguides: an accurate perturbation approach,” Opt. Lett. 8, 63–65 (1983). [CrossRef]
  6. J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133–2160 (1969). [CrossRef]
  7. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  8. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  9. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  10. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor,” Sens. Actuators B 10, 209–211 (1993). [CrossRef]
  11. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  12. C. Delezoide, M. Salsac, J. Lautru, H. Leh, C. Nogues, J. Zyss, M. Buckle, I. Ledoux-Rak, and C. T. Nguyen, “Vertically coupled polymer microracetrack resonators for label-free biochemical sensors,” IEEE Photon. Technol. Lett. 24, 270–272 (2012). [CrossRef]
  13. O. Parriaux and G. J. Veldhuis, “Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors,” J. Lightwave Technol. 16, 573–582 (1998). [CrossRef]
  14. R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micromech. Microeng. 13, 80 (2003). [CrossRef]
  15. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. A 80, 621–626 (2005). [CrossRef]
  16. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  17. R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008). [CrossRef]
  18. G. R. Hadley, “High-accuracy finite-difference equations for dielectric waveguide analysis II: dielectric corners,” J. Lightwave Technol. 20, 1219–1231 (2002). [CrossRef]
  19. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008). [CrossRef]
  20. V. Raghunathan, W. N. Ye, J. Hu, T. Izuhara, J. Michel, and L. Kimerling, “Athermal operation of silicon waveguides: spectral, second order and footprint dependencies,” Opt. Express 18, 17631–17639 (2010). [CrossRef]
  21. C. Z. Tan, “Review and analysis of refractive index temperature dependence in amorphous SiO2,” J. Non-Cryst. Solids 238, 30–36 (1998). [CrossRef]
  22. X. Zhao, C. Li, and Y. Z. Xu, “Stress-induced birefringence control in optical planar waveguides,” Opt. Lett. 28, 564–566 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited