OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 860–864

Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing

Fangteng Zhang, Hang Zhang, Guoping Dong, and Jianrong Qiu  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 860-864 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000860


View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the formation of embedded self-organized, polarization-dependent nanogratings in germanium dioxide glass induced by an 800 nm, 1 kHz femtosecond laser. Optical birefringence was observed to vary with the femtosecond laser polarization in both cases by translating the sample along and perpendicular to the laser propagation direction. Raman spectroscopy indicated that the irradiated area suffered a network distortion. Scanning electron microscopy images of the written lines reveal the formation of periodic planar nanocrack arrays that are aligned perpendicularly to the laser polarization direction after chemical etching. The influences of laser pulse energy and scanning speed on the period of the nanogratings are investigated. The embedded nanogratings in GeO2 glass may find potential applications in optical recording, waveguide fabrication, and other micro-optical devices.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.2250) Ultrafast optics : Femtosecond phenomena
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 14, 2014
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 26, 2014
Published: March 26, 2014

Citation
Fangteng Zhang, Hang Zhang, Guoping Dong, and Jianrong Qiu, "Embedded nanogratings in germanium dioxide glass induced by femtosecond laser direct writing," J. Opt. Soc. Am. B 31, 860-864 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-860


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Kazansky and Y. Shimotsuma, “Self-assembled sub-wavelength structures and form birefringence created by femtosecond laser writing in glass: properties and applications,” J. Ceram. Soc. Jpn. 116, 1052–1062 (2008). [CrossRef]
  2. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photon. Rev. 2, 26–46 (2008). [CrossRef]
  3. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003). [CrossRef]
  4. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” Acs Nano 3, 4062–4070 (2009). [CrossRef]
  5. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005). [CrossRef]
  6. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006). [CrossRef]
  7. R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, and P. B. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007). [CrossRef]
  8. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79, 125436 (2009). [CrossRef]
  9. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express 18, 6885–6890 (2010). [CrossRef]
  10. T. Jia, H. Chen, M. Huang, F. Zhao, J. Qiu, R. Li, Z. Xu, X. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B 72, 125429 (2005). [CrossRef]
  11. R. A. Ganeev, M. Baba, T. Ozaki, and H. Kuroda, “Long- and short-period nanostructure formation on semiconductor surfaces at different ambient conditions,” J. Opt. Soc. Am. B 27, 1077–1082 (2010). [CrossRef]
  12. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A 100, 1–6 (2010). [CrossRef]
  13. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010). [CrossRef]
  14. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20, 4389–4396 (2012). [CrossRef]
  15. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi) transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22, 055304 (2011). [CrossRef]
  16. Y. Dai, G. Wu, X. Lin, G. Ma, and J. Qiu, “Femtosecond laser induced rotated 3D self-organized nanograting in fused silica,” Opt. Express 20, 18072–18078 (2012). [CrossRef]
  17. Y. Han, X. Zhao, and S. Qu, “Polarization dependent ripples induced by femtosecond laser on dense flint (ZF6) glass,” Opt. Express 19, 19150–19155 (2011). [CrossRef]
  18. T. Miyashita and T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. 18, 1432–1450 (1982). [CrossRef]
  19. S. Sakaguchi and S. I. Todoroki, “Optical properties of GeO2 glass and optical fibers,” Appl. Opt. 36, 6809–6814 (1997). [CrossRef]
  20. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978). [CrossRef]
  21. F. Zhang, Y. Yu, C. Cheng, Y. Dai, and J. Qiu, “Fabrication of polarization-dependent light attenuator in fused silica using a low-repetition-rate femtosecond laser,” Opt. Lett. 38, 2212–2214 (2013). [CrossRef]
  22. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011). [CrossRef]
  23. D. J. Durben and G. H. Wolf, “Raman spectroscopic study of the pressure-induced coordination change in GeO2 glass,” Phys. Rev. B 43, 2355 (1991). [CrossRef]
  24. Y. Lin, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. R. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477, 122–125 (2009). [CrossRef]
  25. S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “Raman study of the structure of glasses along the join SiO2-GeO2,” J. Non-cryst. Solids 68, 99–114 (1984). [CrossRef]
  26. F. Liang, R. Vallée, and S. L. Chin, “Pulse fluence dependent nanograting inscription on the surface of fused silica,” Appl. Phys. Lett. 100, 251105 (2012). [CrossRef]
  27. P. G. Kazansky, Y. Shimotsuma, M. Sakakura, M. Beresna, M. Gecevičius, Y. Svirko, S. Akturk, J. Qiu, K. Miura, and K. Hirao, “Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front,” Opt. Express 19, 20657–20664 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited