OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 865–872

Mode characteristics of subwavelength aluminum/silica-coated InAlGaAs/InP circular nanolasers

Chu-Cai Guo, Jin-Long Xiao, Yue-De Yang, and Yong-Zhen Huang  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 865-872 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000865


View Full Text Article

Enhanced HTML    Acrobat PDF (1526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The mode characteristics are demonstrated for InAlGaAs/InP circular nanolasers bonded on silicon wafer, which consist of a core height of 800 nm coated by silica/aluminum on the bottom and sidewalls. The lasing mode spectra agree well with the simulated mode spectra obtained by the 3D FDTD technique for 750 and 450 nm radius nanolasers. For the 250 nm radius nanoresonator, resonant modes with Q factors 400–790 are numerically predicted with a mode wavelength interval up to 200 nm. The mode selection related to the cavity size and location of the active region is critical for nanocavity lasers to operate over a wide temperature range. In addition, the size limit is estimated for high-Q dielectric mode in the nanoresonators. Finally, electric-injection circular nanolasers are discussed with the TE0,1,1 mode.

© 2014 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 19, 2013
Manuscript Accepted: February 19, 2014
Published: March 26, 2014

Citation
Chu-Cai Guo, Jin-Long Xiao, Yue-De Yang, and Yong-Zhen Huang, "Mode characteristics of subwavelength aluminum/silica-coated InAlGaAs/InP circular nanolasers," J. Opt. Soc. Am. B 31, 865-872 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6, 1–13 (2012). [CrossRef]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  3. C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774–788 (2010).
  4. J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007). [CrossRef]
  5. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser Photonics Rev. 4, 751–779 (2010). [CrossRef]
  6. J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, X. M. Lv, J. L. Xiao, and Y. Du, “Coherence of a single mode InAlGaAs/InP cylinderical microlaser with two output ports,” Opt. Lett. 37, 1977–1979 (2012). [CrossRef]
  7. Q. H. Song, L. Ge, B. Redding, and H. Cao, “Channeling chaotic rays into waveguides for efficient collection of microcavity emission,” Phys. Rev. Lett. 108, 243902 (2012). [CrossRef]
  8. J. D. Lin, Y. Z. Huang, Y. D. Yang, Q. F. Yao, X. M. Lv, J. L. Xiao, and Y. Du, “Single transverse whispering-gallery mode AlGaInAs/InP hexagonal resonator microlasers,” IEEE Photon. J. 3, 756–764 (2011).
  9. L. X. Zou, X. M. Lv, Y. Z. Huang, H. Long, J. L. Xiao, Q. F. Yao, J. D. Lin, and Y. Du, “Mode analysis for unidirectional emission AlGaInAs/InP octagonal resonator microlasers,” IEEE J. Sel. Top. Quantum Electron. 19, 1501808 (2013). [CrossRef]
  10. H. H. Fang, R. Ding, S. Y. Lu, Y. D. Yang, Q. D. Chen, J. Feng, Y. Z. Huang, and H. B. Sun, “Whispering-gallery mode lasing from patterned molecular single-crystalline microcavity array,” Laser Photonics Rev. 7, 281–288 (2013). [CrossRef]
  11. Y. R. Nowicki-Bringuier, J. Claudon, C. Bockler, S. Reitzenstein, M. Kamp, A. Morand, A. Forchel, and J. M. Gerard, “High Q whispering gallery modes in GaAs/AlAs pillar microcavities,” Opt. Express 15, 17291–17304 (2007). [CrossRef]
  12. E. Stock, F. Albert, C. Hopfmann, M. Lermer, C. Schneider, S. Hofling, A. Forchel, M. Kamp, and S. Reitzenstein, “On-chip quantum optics with quantum dot microcavities,” Adv. Mater. 25, 707–710 (2013). [CrossRef]
  13. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011). [CrossRef]
  14. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13  fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010). [CrossRef]
  15. F. L. Lu, T. T. D. Tran, W. S. Ko, K. W. Ng, R. Chen, and C. Chang-Hasnain, “Nanolasers grown on silicon-based MOSFETs,” Opt. Express 20, 12171–12176 (2012). [CrossRef]
  16. Q. M. Li, J. B. Wright, W. W. Chow, T. S. Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers,” Opt. Express 20, 17873–17879 (2012). [CrossRef]
  17. H. Gao, A. Fu, S. C. Andrews, and P. Yang, “Cleaved-coupled nanowire lasers,” Proc. Natl. Acad. Sci. USA 110, 865–869 (2013).
  18. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]
  19. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2011). [CrossRef]
  20. S. H. Kwon, J. H. Kang, C. Seassal, S. K. Kim, P. Regreny, Y. H. Lee, C. M. Lieber, and H. G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
  21. Y. J. Lu, J. Kim, H. Y. Chen, C. H. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. G. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012). [CrossRef]
  22. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012). [CrossRef]
  23. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  24. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261–1263 (2008). [CrossRef]
  25. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. C. Zhu, M. H. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef]
  26. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. A. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010). [CrossRef]
  27. Q. Ding, A. Mizrahi, Y. Fainman, and V. Lomakin, “Dielectric shielded nanoscale patch laser resonators,” Opt. Lett. 36, 1812–1814 (2011). [CrossRef]
  28. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19, 21524–21531 (2011). [CrossRef]
  29. Q. F. Yao, Y. Z. Huang, L. X. Zou, X. M. Lv, J. D. Lin, and Y. D. Yang, “Analysis of mode coupling and threshold gain control for nanocircular resonators confined by isolation and metallic layers,” J. Lightwave Technol. 31, 786–792 (2013). [CrossRef]
  30. Q. F. Yao, Y. Z. Huang, Y. D. Yang, L. X. Zou, X. M. Lv, H. Long, J. L. Xiao, and C. C. Guo, “Mode analysis for metal-coated nanocavity by three-dimensional S-matrix method,” J. Opt. Soc. Am. B 30, 1335–1341 (2013). [CrossRef]
  31. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Noetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012).
  32. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. v. Veldhoven, and C. Z. Ning, “Record performance of electrical injection subwavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21, 4728–4733 (2013). [CrossRef]
  33. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010). [CrossRef]
  34. C.-Y. Lu and S. L. Chuang, “A surface-emitting 3D metal-nanocavity laser: proposal and theory,” Opt. Express 19, 13225–13244 (2011). [CrossRef]
  35. G. Roelkens, J. Brouckaert, D. Van Thourhout, R. Baets, R. Notzel, and M. Smit, “Adhesive bonding of InP/InGaAsP dies to processed silicon-on-insulator wafers using DVS-bis-benzocyclobutene,” J. Electrochem. Soc. 153, G1015–G1019 (2006). [CrossRef]
  36. W. H. Guo, W. J. Li, and Y. Z. Huang, “Computation of resonant frequencies and quality factors of cavities by FDTD technique and Pade approximation,” IEEE Microw. Wireless Compon. Lett. 11, 223–225 (2001). [CrossRef]
  37. D. Y. Smith, E. Shiles, and M. Inokuti, “Optical properties of metallic aluminum,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (New York, 1985).
  38. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  39. M.-K. Kim, A. M. Lakhani, and M. C. Wu, “Efficient waveguide-coupling of metal-clad nanolaser cavities,” Opt. Express 19, 23504–23512 (2011). [CrossRef]
  40. X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, and Y. Du, “Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor,” Laser Photon. Rev. 7, 818–829 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited