OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 882–888

835  nm fiber Raman laser pulse pumped by a multimode laser diode at 806  nm

Tianfu Yao and Johan Nilsson  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 882-888 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000882


View Full Text Article

Enhanced HTML    Acrobat PDF (656 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a fiber Raman laser (FRL) based on a highly nonlinear fiber that emits pulses at 835 nm when synchronously pumped by a broadstripe semiconductor laser diode (LD) at 806 nm. The slope efficiency reaches 65% in a 600 m long fiber for a 100 ns long pulse. Our results show that broadstripe LDs are now sufficiently bright for the Raman gain to overcome the relatively high background loss at wavelengths as short as 835 nm, which we believe is the shortest reported to date for any diode-pumped FRL.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 19, 2014
Manuscript Accepted: February 20, 2014
Published: March 26, 2014

Citation
Tianfu Yao and Johan Nilsson, "835  nm fiber Raman laser pulse pumped by a multimode laser diode at 806  nm," J. Opt. Soc. Am. B 31, 882-888 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron. 7, 3–16 (2001). [CrossRef]
  2. J. Nilsson, J. K. Sahu, J. N. Jang, R. Selvas, D. C. Hanna, and A. B. Grudinin, “Cladding-pumped Raman fiber amplifier,” in Proceedings of Topical Meeting on Optical Amplifiers and Their Applications, Vancouver, Canada, July14–17, 2002, paper PDP2-1/2/3.
  3. C. A. Codemard, P. Dupriez, Y. Jeong, J. K. Sahu, M. Ibsen, and J. Nilsson, “High-power continuous-wave cladding-pumped Raman fiber laser,” Opt. Lett. 31, 2290–2292 (2006). [CrossRef]
  4. A. K. Sridharan, J. E. Heebner, M. J. Messerly, J. W. Dawson, R. J. Beach, and C. P. J. Barty, “Brightness enhancement in a high-peak-power cladding-pumped Raman fiber amplifier,” Opt. Lett. 34, 2234–2236 (2009). [CrossRef]
  5. C. A. Codemard, J. Ji, J. K. Sahu, and J. Nilsson, “100  W CW cladding-pumped Raman fiber laser at 1120  nm,” Proc. SPIE 7580, 75801N (2010). [CrossRef]
  6. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef]
  7. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  8. N. Bloembergen, “The stimulated Raman effect,” Am. J. Phys. 35, 989–1023 (1967). [CrossRef]
  9. E. M. Dianov, “Advances in Raman fibers,” J. Lightwave Technol. 20, 1457–1462 (2002). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  11. S. I. Kablukov, E. I. Dontsova, E. A. Zlobina, I. N. Nemov, A. A. Vlasov, and S. A. Babin, “An LD-pumped Raman fiber laser operating below 1  μm,” Laser Phys. Lett. 10, 085103 (2013). [CrossRef]
  12. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers,” IEE Proc. J. Optoelectron. 136, 301–306 (1989). [CrossRef]
  13. W. A. Clarkson and D. C. Hanna, “Two-mirror beam-shaping technique for high-power diode bars,” Opt. Lett. 21, 375–377 (1996). [CrossRef]
  14. Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B 20, 1616–1631 (2003). [CrossRef]
  15. M. Fridman, M. Nixon, M. Dubinskii, A. A. Friesem, and N. Davidson, “Principal modes in fiber amplifiers,” Opt. Lett. 36, 388–390 (2011). [CrossRef]
  16. D. Mahgerefteh, H. Yu, D. L. Butler, J. Goldhar, D. Wang, E. Golovchenko, A. N. Phlipetskii, C. R. Menyuk, and L. Joneckis, “Effect of randomly varying birefringence on the Raman gain in optical fibers,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 1997), Vol. 11, p. 447.
  17. S. Popov, E. Vanin, and G. Jacobsen, “Influence of polarization mode dispersion value in dispersion-compensating fibers on the polarization dependence of Raman gain,” Opt. Lett. 27, 848–850 (2002). [CrossRef]
  18. A. Polley and S. E. Ralph, “Raman amplification in multimode fiber,” IEEE Photon. Technol. Lett. 19, 218–220 (2007). [CrossRef]
  19. T. Yao and J. Nilsson, “Fibre Raman laser directly pumped by multimode laser diode at 975  nm,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference (CLEO/IQEC), Munich, Germany, May12–16, 2013, paper CJ-9.2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited