OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 889–897

Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects

Lifu Zhang, Jinggui Zhang, Ying Chen, Anling Liu, and Guangcan Liu  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 889-897 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dynamic propagation of the finite-energy Airy pulse (FEAP) is studied numerically in the presence of higher-order effects, including Raman scattering, self-steepening (SS), and third-order dispersion (TOD). It is shown that the Raman-induced frequency shift (RIFS) of a FEAP can be tailored by varying the truncation coefficient of the FEAP. In particular, the combined effects of Raman scattering and SS (or TOD) on the nonlinear propagation of a FEAP are identified. It is found that both TOD and SS effects tend to slow down the RIFS during the nonlinear propagation of a FEAP. In addition, the simultaneous contributions of Raman, TOD, and SS effects to the nonlinear propagation of FEAP are further discussed. Compared to the conventional symmetric pulses, such as Sech pulses, the FEAP can generate a broadening spectrum that is extended toward the blue side, in addition to the conventional red-shifted components. These results demonstrate that the FEAP can be used for supercontinuum generation and broadband sources.

© 2014 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Nonlinear Optics

Original Manuscript: December 5, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 25, 2014
Published: March 27, 2014

Lifu Zhang, Jinggui Zhang, Ying Chen, Anling Liu, and Guangcan Liu, "Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects," J. Opt. Soc. Am. B 31, 889-897 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979). [CrossRef]
  2. G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007). [CrossRef]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007). [CrossRef]
  4. Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.
  5. C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013). [CrossRef]
  6. J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008). [CrossRef]
  7. Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. N. Christodoulides, J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013). [CrossRef]
  8. Z. Zheng, B. Zhang, H. Chen, J. Ding, H. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011). [CrossRef]
  9. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011). [CrossRef]
  10. P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009). [CrossRef]
  11. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009). [CrossRef]
  12. A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).
  13. C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012). [CrossRef]
  14. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012). [CrossRef]
  15. P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010). [CrossRef]
  16. C. Ament, P. Polynkin, J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107, 243901 (2011). [CrossRef]
  17. M. Miyagi, S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18, 678–682 (1979). [CrossRef]
  18. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19, 1653–1660 (1980). [CrossRef]
  19. C. C. Chang, H. P. Sardesai, A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998). [CrossRef]
  20. A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010). [CrossRef]
  21. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010). [CrossRef]
  22. Y. Fattal, A. Rudnick, D. M. Marom, “Soliton shedding from airy pulses in Kerr media,” Opt. Express 19, 17298–17307 (2011). [CrossRef]
  23. Y. Hu, M. Li, D. Bongiovanni, M. Clerici, J. Yao, Z. Chen, J. Azaña, R. Morandotti, “Spectrum to distance mapping via nonlinear Airy pulses,” Opt. Lett. 38, 380–382 (2013). [CrossRef]
  24. I. M. Besieris, A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E 78, 046605 (2008). [CrossRef]
  25. R. Driben, Y. Hu, Z. Chen, B. A. Malomed, R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38, 2499–2501 (2013). [CrossRef]
  26. I. Kaminer, Y. Lumer, M. Segev, D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19, 23132–23139 (2011). [CrossRef]
  27. M. A. Preciado, M. A. Muriel, “Bandlimited Airy pulses for invariant propagation in single-mode fibers,” J. Lightwave Technol. 30, 3660–3666 (2012). [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  29. R. H. Stolen, W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9, 565–573 (1992). [CrossRef]
  30. J. R. de Oliveira, M. A. de Moura, J. M. Hickmann, A. S. L. Gomes, “Self-steepening of optical pulses in dispersive media,” J. Opt. Soc. Am. B 9, 2025–2027 (1992). [CrossRef]
  31. E. N. Tsoy, C. M. de Sterke, “Dynamics of ultrashort pulses near zero dispersion wavelength,” J. Opt. Soc. Am. B 23, 2425–2433 (2006). [CrossRef]
  32. S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999). [CrossRef]
  33. Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000). [CrossRef]
  34. B. Gross, J. T. Manassah, “Supercontinuum in the anomalous group-velocity dispersion region,” J. Opt. Soc. Am. B 9, 1813–1818 (1992). [CrossRef]
  35. E. Bourkoff, W. Zhao, R. I. Joseph, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272–274 (1987). [CrossRef]
  36. P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  37. W. Zhao, E. Bourkoff, “Femtosecond pulse propagation in optical fibers: higher order effects,” IEEE J. Quantum Electron. 24, 365–372 (1988). [CrossRef]
  38. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  39. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef]
  40. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef]
  41. J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008). [CrossRef]
  42. O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 2328–2335 (2010). [CrossRef]
  43. A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited