OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 898–903

Diode-pumped orthogonally polarized Nd:LuVO4 lasers based on the 4F3/24I11/2 transition

Yanfei Lü, Jing Xia, Xihong Fu, Anfeng Zhang, Huilong Liu, and Jing Zhang  »View Author Affiliations

JOSA B, Vol. 31, Issue 4, pp. 898-903 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-pumped simultaneous orthogonally polarized continuous-wave (cw) dual-wavelength Nd:LuVO4 laser based on the F3/24I11/24 transition is experimentally demonstrated. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous orthogonally polarized dual-wavelength laser. Using a polarization beam splitter included resonant cavity in the experiments, simultaneous orthogonal polarized dual-wavelength Nd:LuVO4 laser operation was realized at two close wavelengths near 1060–1070 nm. To our knowledge, this is the first work of realizing simultaneous dual-wavelength Nd:LuVO4 laser operation near 1060–1070 nm.

© 2014 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 29, 2014
Revised Manuscript: February 23, 2014
Manuscript Accepted: February 24, 2014
Published: March 28, 2014

Yanfei Lü, Jing Xia, Xihong Fu, Anfeng Zhang, Huilong Liu, and Jing Zhang, "Diode-pumped orthogonally polarized Nd:LuVO4 lasers based on the 4F3/24I11/2 transition," J. Opt. Soc. Am. B 31, 898-903 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Weigl, “A generalized technique of two-wavelength, nondiffuse holographic interferometry,” Appl. Opt. 10, 187–192 (1971). [CrossRef]
  2. S. N. Son, J. J. Song, J. U. Kang, and C. S. Kim, “Simultaneous second harmonic generation of multiple wavelength laser outputs for medical sensing,” Sensors 11, 6125–6130 (2011). [CrossRef]
  3. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34, 4269–4273 (1995). [CrossRef]
  4. Y. F. Chen, Y. S. Chen, and S. W. Tsai, “Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys. B 79, 207–210 (2004). [CrossRef]
  5. N. G. Basov, M. A. Gubin, V. V. Nikitin, A. V. Nikuchin, V. N. Petrovskii, E. D. Protsenko, and D. A. Tyurikov, “Highly-sensitive method of narrow spectral-line separations, based on the detection of frequency resonances of a 2-mode gas-laser with non-linear absorption,” Izv. Akad. Nauk Arm. SSSR, Ser. Fiz.-Mat. Nauk 46, 1573–1583 (1982).
  6. C. G. Bethea, “Megawatt power at 1.318  μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318  μm,” IEEE. J. Quantum Electron. 9, 254 (1973). [CrossRef]
  7. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16, 267–269 (1999). [CrossRef]
  8. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Simultaneous multiple wavelength laser action in various neodymium host crystals,” IEEE J. Quantum Electron. 27, 2315–2318 (1991). [CrossRef]
  9. C. Ren and S. L. Zhang, “Diode-pumped dual-frequency microchip Nd:YAG laser with tunable frequency difference,” J. Phys. D 42, 155107 (2009). [CrossRef]
  10. Y. Lu, B. G. Zhang, E. B. Li, D. G. Xu, R. Zhou, X. Zhao, F. Ji, T. L. Zhang, P. Wang, and J. Q. Yao, “High power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition,” Opt. Commun. 262, 241–245 (2006). [CrossRef]
  11. N. Pavel, “Simultaneous dual-wavelength emission at 0.90 and 1.06  μm in Nd-doped laser crystals,” Laser Phys. 20, 215–221 (2010). [CrossRef]
  12. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, A. H. Li, and Z. Q. Chen, “1318.8  nm/1338.2  nm simultaneous dual-wavelength Q-switched Nd:YAG laser,” Appl. Phys. B 90, 451–454 (2008). [CrossRef]
  13. Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70, 475–478 (2000). [CrossRef]
  14. R. Zhou, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Continuous- wave operation at 1386  nm in a diode-end-pumped Nd:YVO4 laser,” Opt. Express 13, 5818–5824 (2005). [CrossRef]
  15. Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, and Y. C. Huang, “Single-longitudinal-mode, tunable dual wavelength, CW Nd:YVO4 laser,” Opt. Express 14, 5329–5334 (2006). [CrossRef]
  16. R. Zhou, E. B. Li, B. G. Zhang, X. Ding, Z. Q. Cai, W. Q. Wen, P. Wang, and J. Q. Yao, “Simultaneous dual-wavelength CW operation using 4F3/2-4I13/2 transitions in Nd:YVO4 crystal,” Opt. Commun. 260, 641–644 (2006). [CrossRef]
  17. X. P. Yan, Q. Liu, H. L. Chen, F. Xing, M. L. Gong, and D. S. Wang, “A novel orthogonally linearly polarized Nd:YVO4 laser,” Chin. Phys. B 19, 084202 (2010). [CrossRef]
  18. E. Herault, F. Balembois, and P. Georges, “491  nm generation by sum-frequency mixing of diode pumped neodymium lasers,” Opt. Express 13, 5653–5661 (2005). [CrossRef]
  19. J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd:GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B 79, 301–304 (2004). [CrossRef]
  20. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065  nm,” Opt. Express 17, 6004–6009 (2009). [CrossRef]
  21. K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, “Continuous-wave simultaneous dual-wavelength operation at 912 and 1063  nm in Nd:GdVO4,” Appl. Phys. B 86, 65–70 (2007). [CrossRef]
  22. Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083  nm,” Opt. Lett. 30, 2107–2109 (2005). [CrossRef]
  23. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086  nm and 1089  nm,” Opt. Express 20, 5644–5651 (2012). [CrossRef]
  24. H. Y. Shen, R. R. Zeng, Y. P. Zhou, G. F. Yu, C. H. Huang, Z. D. Zeng, W. J. Zhang, and Q. J. Ye, “Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at transitions from 4F3/2-4I11/2 and 4F3/2-4I13/2,” Appl. Phys. Lett. 56, 1937–1938 (1990). [CrossRef]
  25. C. H. Huang, G. Zhang, Y. Wei, L. X. Huang, and H. Y. Zhu, “A Q-switched Nd:YAlO3 laser emitting 1080 and 1342  nm,” Opt. Commun. 281, 3820–3823 (2008). [CrossRef]
  26. Z. Cong, D. Tang, W. D. Tan, J. Zhang, C. Xu, D. Luo, X. Xu, D. Li, J. Xu, X. Zhang, and Q. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19, 3984–3989 (2011). [CrossRef]
  27. S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107, 41–45 (2012). [CrossRef]
  28. S. D. Liu, L. H. Zheng, J. L. He, J. Xu, X. D. Xu, L. B. Su, K. J. Yang, B. T. Zhang, R. H. Wang, and X. M. Liu, “Passively Q-switched Nd:Sc0.2Y0.8SiO5 dual-wavelength laser with the orthogonally polarized output,” Opt. Express 20, 22448–22453 (2012). [CrossRef]
  29. L. G. Fei and S. L. Zhang, “The discovery of nanometer fringes in laser self-mixing interference,” Opt. Commun. 273, 226–230 (2007). [CrossRef]
  30. S. L. Zhang, Y. D. Tan, and Y. Li, “Orthogonally polarized dual frequency lasers and applications in self-sensing metrology,” Meas. Sci. Technol. 21, 054016 (2010). [CrossRef]
  31. S. Zhang and D. Li, “Using beat frequency lasers to measure micro-displacement and gravity: a discussion,” Appl. Opt. 27, 20–21 (1988). [CrossRef]
  32. S. Zhang, M. Wu, and G. Jin, “Birefringent tuning double frequency He-Ne laser,” Appl. Opt. 29, 1265–1267 (1990). [CrossRef]
  33. J. Zhang, T. Feng, S. Zhang, and G. Jin, “Measurements of magnetic fields by a ring laser,” Appl. Opt. 31, 6459–6462 (1992). [CrossRef]
  34. Y. Ding, S. Zhang, Y. Li, J. Zhu, W. Du, and R. Suo, “Displacement sensors based on feedback effect of orthogonally polarized lights of frequency-split HeNe lasers,” Opt. Eng. 42, 2225–2228 (2003). [CrossRef]
  35. C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002). [CrossRef]
  36. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  37. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005). [CrossRef]
  38. J. B. Baxter and G. W. Guglietta, “Terahertz spectroscopy,” Anal. Chem. 83, 4342–4368 (2011). [CrossRef]
  39. C. B. Reid, E. Pickwell-MacPherson, J. G. Laufer, A. P. Gibson, J. C. Hebden, and V. P. Wallace, “Accuracy and resolution of THz reflection spectroscopy for medical imaging,” Phys. Med. Biol. 55, 4825–4838 (2010). [CrossRef]
  40. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988). [CrossRef]
  41. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20, 277–278 (1966). [CrossRef]
  42. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (expanded) ed. (Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited