OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 919–925

Photovoltaic laser beam degradation in lithium niobate planar waveguides: two-center model approach

A. Alcázar, J. Ramiro, A. Méndez, J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera  »View Author Affiliations


JOSA B, Vol. 31, Issue 4, pp. 919-925 (2014)
http://dx.doi.org/10.1364/JOSAB.31.000919


View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photovoltaic laser beam degradation in lithium niobate (LiNbO3) has been investigated through a finite-differences beam propagation method for nonlinear media. The simulations use a two-center model (Fe2+Fe3+, NbLi4+NbLi5+) that has been recently proved to be necessary to successfully describe the photorefractive effect in nominally pure LiNbO3. Refractive index profiles and intensity and phase beam profiles have been calculated for a wide intensity range and several material distances. A good agreement is obtained on comparing simulations and experimental data. This includes self-defocusing for moderate intensities and the complex beam profile structures appearing for high intensities, providing a complete description of this nonlinear optical phenomenon.

© 2014 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.5330) Nonlinear optics : Photorefractive optics
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: November 26, 2013
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 10, 2014
Published: March 31, 2014

Citation
A. Alcázar, J. Ramiro, A. Méndez, J. Villarroel, M. Carrascosa, A. García-Cabañes, and J. M. Cabrera, "Photovoltaic laser beam degradation in lithium niobate planar waveguides: two-center model approach," J. Opt. Soc. Am. B 31, 919-925 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-4-919


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004). [CrossRef]
  2. A. Ashkin, G. D. Boyd, J. M. Dziedzik, R. G. Smith, A. A. Ballman, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966). [CrossRef]
  3. T. Volk, M. Wolecke, and N. Rubinina, “Optical damage resistance in lithium niobate,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer, 2007), pp. 165–203.
  4. M. Carrascosa, J. Villarroel, J. Carnicero, A. García-Cabañes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115–120 (2008). [CrossRef]
  5. R. L. Holman and J. P. Cressman, “Optical damage resistance of lithium niobate waveguides,” Opt. Eng. 21, 216025 (1982). [CrossRef]
  6. J. Rams, A. Alcázar-de-Velasco, M. Carrascosa, J. Cabrera, and F. Agulló-López, “Optical damage inhibition and thresholding effects in lithium niobate above room temperature,” Opt. Commun. 178, 211–216 (2000). [CrossRef]
  7. S. Sevostyanov and O. Kostritskii, “Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals,” Appl. Phys. B 65, 527–533 (1997). [CrossRef]
  8. A. Alcázar de V., J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in a-phase proton-exchanged LiNbO3 waveguides,” Appl. Phys. B 68, 989–993 (1999). [CrossRef]
  9. F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825 (2010). [CrossRef]
  10. J. Villarroel, O. Caballero-Calero, B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Photorefractive non-linear beam propagation in lithium niobate waveguides above the optical damage threshold,” Opt. Mater. 33, 103–106 (2010). [CrossRef]
  11. M. Jubera, J. Villarroel, A. García-Cabañes, M. Carrascosa, J. Olivares, and F. Lüdtke, “Characterization and inhibition of photorefractive optical damage of swift–heavy ion irradiation waveguides in LiNbO3,” J. Opt. Soc. Am. B 29, 3000–3005 (2012). [CrossRef]
  12. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995). [CrossRef]
  13. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3: Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993). [CrossRef]
  14. J. Villarroel, J. Carnicero, F. Luedtke, M. Carrascosa, A. García-Cabañes, J. M. Cabrera, A. Alcazar, and B. Ramiro, “Analysis of photorefractive optical damage in lithium niobate: application to planar waveguides,” Opt. Express 18, 20852–20861 (2010). [CrossRef]
  15. A. A. Zozulya, M. Saffman, and D. Z. Anderson, “Propagation of light beams in photorefractive media: fanning, self-bending, and formation of self-pumped four-wave-mixing phase conjugation geometries,” Phys. Rev. Lett. 73, 818–821 (1994). [CrossRef]
  16. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391–407 (1997). [CrossRef]
  17. J. Carnicero, O. Caballero, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in LiNbO3 analyses under the two-center model,” Appl. Phys. B 79, 351–358 (2004). [CrossRef]
  18. N. Iyi, K. Kitamura, F. Izumi, K. Yamamoto, T. Hayasi, H. Asano, and S. Kimura, “Comparative study of defects structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992). [CrossRef]
  19. N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids 55, 145–152 (1994). [CrossRef]
  20. G. de la Paliza, O. Caballero, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, “Superlinear photovoltaic currents in proton exchanged LiNbO3 waveguides,” Appl. Phys. B 76, 555–559 (2003). [CrossRef]
  21. M. Simon, S. Wevering, K. Buse, and E. Kratzig, “The bulk photovoltaic effect of photorefractive LiNbO3: Fe crystals at high light intensities,” J. Phys. D. 30, 144–149 (1997). [CrossRef]
  22. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium-niobate crystals,” J. Appl. Phys. 87, 1034–1041 (2000). [CrossRef]
  23. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003), Chap. 5.
  24. J. M. Cabrera, P. Townsend, and E. Glavas, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited