OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1000–1005

Fabrication of planar metamaterials with sharp and strong electromagnetically induced transparency-like characteristics at wavelengths around 820  nm

Ryohei Hokari, Yoshiaki Kanamori, and Kazuhiro Hane  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1000-1005 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001000


View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fabrication of plasmonic metamaterials having electromagnetically induced transparency (EIT)-like characteristics with sharp and strong spectral responses is a challenging task for device applications at near-infrared wavelengths. EIT-like effects in silver metamaterials consisting of dipole resonators and quadrupole resonators were experimentally demonstrated, and their characteristics were evaluated. Optical characteristics of the metamaterials could be controlled by the gap distance between the two resonators. At wavelengths around 820 nm, EIT-like effects with transmittance between 72% and 28% were observed for the metamaterials with gap distances between 13 and 69 nm. At a gap of 13 nm, a maximum modulation depth of 2.29 was achieved.

© 2014 Optical Society of America

OCIS Codes
(070.4790) Fourier optics and signal processing : Spectrum analysis
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: December 24, 2013
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 13, 2014
Published: April 8, 2014

Citation
Ryohei Hokari, Yoshiaki Kanamori, and Kazuhiro Hane, "Fabrication of planar metamaterials with sharp and strong electromagnetically induced transparency-like characteristics at wavelengths around 820  nm," J. Opt. Soc. Am. B 31, 1000-1005 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
  2. A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
  3. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
  4. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
  7. G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
  8. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
  9. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
  10. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
  11. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
  12. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
  13. M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).
  14. H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).
  15. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
  16. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
  17. Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
  18. S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19, 15363–15370 (2011).
  19. Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010). [CrossRef]
  20. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18, 17187–17192 (2010).
  21. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
  22. K. O’Brien, N. D. Lanzillotti-Kimura, H. Suchowski, B. Kante, Y. Park, X. Yin, X. Zhang, “Reflective interferometry for optical metamaterial phase measurements,” Opt. Lett. 37, 4089–4091 (2012).
  23. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).
  24. R. Hokari, Y. Kanamori, K. Hane, “Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths,” Opt. Express 22, 3526–3537 (2014).
  25. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
  26. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).
  27. T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
  28. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
  29. C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
  30. J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18, 17997–18002 (2010).
  31. L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).
  32. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
  33. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
  34. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited