OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1006–1010

Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform

Marie-Claude N. Dicaire, Jeremy Upham, Israel De Leon, Sebastian A. Schulz, and Robert W. Boyd  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1006-1010 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several methods exist to measure the group delay of a fiber Bragg grating. Here, we compare two such methods, namely the Hilbert transform (HT) of the device transmission spectrum and standard Fourier spectral interferometry. Numerical simulations demonstrate that both methods work not only for ideal, lossless devices but also for ones with realistic absorption. Experimental measurements show that the HT is more straightforward to implement and is significantly less susceptible to phase noise, which can significantly reduce the standard deviation between measurements.

© 2014 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 29, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 10, 2014
Published: April 8, 2014

Marie-Claude N. Dicaire, Jeremy Upham, Israel De Leon, Sebastian A. Schulz, and Robert W. Boyd, "Group delay measurement of fiber Bragg grating resonances in transmission: Fourier transform interferometry versus Hilbert transform," J. Opt. Soc. Am. B 31, 1006-1010 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef]
  2. N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Lightwave Technol. 15, 1303–1313 (1997). [CrossRef]
  3. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996). [CrossRef]
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997). [CrossRef]
  5. H. Wen, M. Terrel, S. Fan, and M. Digonnet, “Sensing with slow light in fiber Bragg gratings,” IEEE Sens. J. 12, 156–163 (2012). [CrossRef]
  6. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef]
  7. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000). [CrossRef]
  8. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B 28, A38–A44 (2011). [CrossRef]
  9. J. T. Mok, M. Ibsen, C. M. de Sterke, and B. J. Eggleton, “Dispersionless slow light with 5-pulse-width delay in fibre Bragg grating,” Electron. Lett. 43, 1418–1419 (2007). [CrossRef]
  10. H. Shahoei, M. Li, and J. Yao, “Continuously tunable time delay using an optically pumped linear chirped fiber Bragg grating,” J. Lightwave Technol. 29, 1465–1472 (2011). [CrossRef]
  11. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007). [CrossRef]
  12. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  13. K.-E. Peiponen and E. M. Vartiainen, “Kramers-Kronig relations in optical data inversion,” Phys. Rev. B 44, 8301–8303 (1991). [CrossRef]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  15. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, 1962).
  16. A. Carballar and C. Janer, “Complete fiber Bragg grating characterization using an alternative method based on spectral interferometry and minimum-phase reconstruction algorithms,” J. Lightwave Technol. 30, 2574–2582 (2012). [CrossRef]
  17. A. Mecozzi, “Retrieving the full optical response from amplitude data by Hilbert transform,” Opt. Commun. 282, 4183–4187 (2009). [CrossRef]
  18. R. H. J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, “Kramers-Kronig relations for an interferometer,” Opt. Commun. 138, 118–126 (1997). [CrossRef]
  19. L. Poladian, “Group-delay reconstruction for fiber Bragg gratings in reflection and transmission,” Opt. Lett. 22, 1571–1573 (1997). [CrossRef]
  20. M. J. Erro, I. Arnedo, M. A. G. Laso, T. Lopetegi, and M. A. Muriel, “Phase-reconstruction in photonic crystals from S-parameter magnitude in microstrip technology,” Opt. Quantum Electron. 39, 321–331 (2007). [CrossRef]
  21. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994). [CrossRef]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  23. J. Upham, I. De Leon, D. Grobnic, E. Ma, M.-C. N. Dicaire, S. A. Schulz, S. Murugkar, and R. W. Boyd, “Enhancing optical field intensities in Gaussian-profile fiber Bragg gratings,” Opt. Lett. 39, 849–852 (2014). [CrossRef]
  24. I. C. M. Littler, T. Grujic, and B. J. Eggleton, “Photothermal effects in fiber Bragg gratings,” Appl. Opt. 45, 4679–4685 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited