OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1011–1017

Systematic design of wideband slow light in ellipse-hole photonic crystal waveguides

Jian Tang, Tao Wang, Xiaoming Li, Bo Liu, Boyun Wang, and Yu He  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1011-1017 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (660 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study presents a systematic optimization procedure to generate slow light with large group index, wideband, and low dispersion in an ellipse-hole photonic crystal waveguide. The group index, bandwidth, and dispersion can be tuned efficiently by changing the orientation of the ellipse holes in the first row and a longitudinal hole position shift of the third row. Under a constant group index criterion of ±10% variation, the corresponding bandwidths of the flat band reach are 13.5, 9.4, 7.8, and 6.1 nm around 1550 nm when the group indices are approximately the constants 46, 63, 78, and 100, respectively. A nearly constant group index–bandwidth product of 0.39 was achieved for all cases. Low-dispersion slow-light propagation was confirmed by studying the relative temporal pulsewidth spreading with the two-dimensional finite difference time-domain method.

© 2014 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Optical Devices

Original Manuscript: October 22, 2013
Revised Manuscript: March 6, 2014
Manuscript Accepted: March 6, 2014
Published: April 8, 2014

Jian Tang, Tao Wang, Xiaoming Li, Bo Liu, Boyun Wang, and Yu He, "Systematic design of wideband slow light in ellipse-hole photonic crystal waveguides," J. Opt. Soc. Am. B 31, 1011-1017 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  2. M. Christelle, E. H. Majid, and J. E. Benjamin, “Slow light enhancement nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010). [CrossRef]
  3. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005). [CrossRef]
  4. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef]
  5. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  6. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005).
  7. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  8. L. H. Frandsen, A. V. Lavrinenko, J. F. Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  9. J. Li, T. P. White, L. O. Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  10. J. Tang, T. Wang, X.-M. Li, B.-Y. Wang, C.-B. Dong, L. Gao, B. Liu, Y. He, and W. Yan, “Wideband and low dispersion slow light in lattice-shifted photonic crystal waveguides,” J. Lightwave Technol. 31, 3188–3194 (2013). [CrossRef]
  11. J. Liang, L.-Y. Ren, M.-J. Yun, X. Han, and X.-J. Wang, “Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide,” J. Appl. Phys. 110, 063103 (2011). [CrossRef]
  12. L. Dai, T. Li, and C. Jiang, “Wideband ultralow high-order-dispersion photonic crystal slow-light waveguide,” J. Opt. Soc. Am. B 28, 1622–1626 (2011). [CrossRef]
  13. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009). [CrossRef]
  14. F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostr. Fundam. Appl. 10, 378–388 (2012). [CrossRef]
  15. K. Üstün and H. Kurt, “Slow light structure with enhanced delay–bandwidth product,” J. Opt. Soc. Am. B 29, 2403–2409 (2012). [CrossRef]
  16. H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun. 285, 2743–2745 (2012). [CrossRef]
  17. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010). [CrossRef]
  18. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008). [CrossRef]
  19. S. Rawal, R. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325 (2009). [CrossRef]
  20. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010). [CrossRef]
  21. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013). [CrossRef]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  23. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
  24. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electro-magnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  25. L. O’Faolain, S. Schulz, D. M. Beggs, T. P. White, L. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, J. Mazoyer, P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  26. F.-C. Leng, W.-Y. Liang, B. Liu, T.-B. Wang, and H.-Z. Wang, “Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides,” Opt. Express 18, 5707–5712 (2010). [CrossRef]
  27. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007). [CrossRef]
  28. D. M. Beggs, L. O’Faolain, and T. F. Krauss, “Accurate determination of the functional hole size in photonic crystal slab using optical methods,” Photon. Nanostr. Fundam. Appl. 6, 213–218 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited