OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1018–1025

Phase shift of amplitude-modulated optical signals in graphene oxide water dispersions due to thermal lens focal length oscillation

Sonia Melle, Oscar G. Calderón, Ana Egatz-Gómez, E. Cabrera-Granado, F. Carreño, M. A. Antón, and H. J. Salavagione  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1018-1025 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001018


View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze the phase shift induced in an amplitude-modulated laser beam propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. This phase shift arises from the thermally induced nonlinear refraction in the sample. The system exhibits strong optical limiting performance for weak continuous-wave signals. A theoretical model including beam propagation and thermal lens focal length oscillation reproduces the experimental findings.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 2, 2014
Manuscript Accepted: February 1, 2014
Published: April 8, 2014

Citation
Sonia Melle, Oscar G. Calderón, Ana Egatz-Gómez, E. Cabrera-Granado, F. Carreño, M. A. Antón, and H. J. Salavagione, "Phase shift of amplitude-modulated optical signals in graphene oxide water dispersions due to thermal lens focal length oscillation," J. Opt. Soc. Am. B 31, 1018-1025 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39, 228–240 (2009). [CrossRef]
  2. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2, 1015–1024 (2010).
  3. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, “Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles,” Carbon 42, 2929–2937 (2004).
  4. J. I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, “Graphene oxide dispersions in organic solvents,” Langmuir 24, 10560–10564 (2008). [CrossRef]
  5. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nat. Nanotechnol. 4, 217–224 (2009). [CrossRef]
  6. S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, and C. N. R. Rao, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Appl. Phys. Lett. 95, 191911 (2009). [CrossRef]
  7. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, “Optical properties of graphene oxide in nanosecond and picosecond regimes,” Appl. Phys. Lett. 94, 021902 (2009). [CrossRef]
  8. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater. 21, 2430–2435 (2009). [CrossRef]
  9. M. Feng, H. Zhan, and Y. Chen, “Nonlinear optical and optical limiting properties of graphene families,” Appl. Phys. Lett. 96, 033107 (2010). [CrossRef]
  10. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear optical properties and broadband optical power limiting action of graphene oxide colloids,” J. Phys. Chem. C 117, 6842–6850 (2013). [CrossRef]
  11. Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang, Y. Ma, X. Zhang, and Y. Chen, “A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property,” Adv. Mater. 21, 1275–1279 (2009). [CrossRef]
  12. R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, and E. Wang, “Purely coherent nonlinear optical response in solution dispersions of graphene sheets,” Nano Lett. 11, 5159–5164 (2011).
  13. X.-L. Zhang, Z.-B. Liu, X.-C. Li, Q. Ma, X.-D. Chen, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, “Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion,” Opt. Express 21, 7511–7520 (2013). [CrossRef]
  14. J. Li, Y. Zhang, H. Li, C. Yao, and P. Yuan, “Observation of tunable superluminal propagation in the single-layer graphene oxide solution,” Opt. Commun. 295, 226–229 (2013). [CrossRef]
  15. X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett. 98, 121905 (2011). [CrossRef]
  16. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  17. F. Arrieta-Yáñez, O. G. Calderón, and S. Melle, “Fast light based on excited-state absorption in erbium doped fibers,” in IONS 9 International OSA Network of Students (Optical Society of America, 2011).
  18. G. S. Agarwal and T. N. Dey, “Sub- and superluminal propagation of intense pulses in media with saturated and reverse absorption,” Phys. Rev. Lett. 92, 203901 (2004). [CrossRef]
  19. H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90, 121107 (2007). [CrossRef]
  20. G. Leonard, “Free carrier absorption in graphene oxide thin film,” B.S. thesis (National University of Singapore, 2012), http://www.physics.nus.edu.sg/student/Honours Projects Repository/leonard Goh fyp-final.pdf .
  21. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).
  22. D. Rojas, R. J. Silva, J. D. Spear, and R. E. Russo, “Dual-beam optical fiber thermal lens spectroscopy,” Anal. Chem. 63, 1927–1932 (1991). [CrossRef]
  23. M. Franko and C. D. Tran, Encyclopedia of Analytical Chemistry: Thermal Lens Spectroscopy (Wiley, 2010).
  24. C. Estupiñán-López, C. T. Dominguez, and R. de Araujo, “Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement,” Opt. Express 21, 18592–18601 (2013). [CrossRef]
  25. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003), Chap. 4.5.
  26. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  27. J. R. Whinney, “Laser measurement of optical absorption in liquids,” Acc. Chem. Res. 7, 225–231 (1974). [CrossRef]
  28. C. Hu and J. R. Whinnery, “New thermooptical measurement method and a comparison with other methods,” Appl. Opt. 12, 72–79 (1973). [CrossRef]
  29. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef]
  30. S. E. Bialkowski and A. Chartier, “Diffraction effects in single- and two-laser photothermal lens spectroscopy,” Appl. Opt. 36, 6711–6721 (1997). [CrossRef]
  31. L. C. Malacarne, N. G. C. Astrath, and L. S. Herculano, “Laser-induced wavefront distortion in optical materials: a general model,” J. Opt. Soc. Am. B 29, 3355–3359 (2012). [CrossRef]
  32. American Institute of Physics Handbook (McGraw-Hill, 1957), Sections 4g and 6b.
  33. A. E. Siegman, Lasers (University Science Books, 1986).
  34. A. Sennaroglu, “Effect of thermal lensing on the mode matching between pump and laser beams in Cr4+: forsterite lasers: a numerical study,” J. Phys. D 33, 1478–1483 (2000).
  35. B.-X. Wang, L.-P. Zhou, and X.-F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” Int. J. Heat Mass Transfer 46, 2665–2672 (2003).
  36. C. Liu, Z. Wang, H. Jia, and Z. Li, “Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform,” Chem. Commun. 47, 4661–4663 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited