OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1035–1040

Distortion-free enhancement of terahertz signals measured by electro-optic sampling. II. Experiment

Jeremy A. Johnson, Fabian D. J. Brunner, Sebastian Grübel, Andrés Ferrer, Steven L. Johnson, and Thomas Feurer  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1035-1040 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three methods for distortion-free enhancement of electro-optic sampling measurements of terahertz signals are tested. In the first part of this two-paper series [J. Opt. Soc. Am B 31, 904–910 (2014)], the theoretical framework for describing the signal enhancement was presented and discussed. As the applied optical bias is decreased, individual signal traces become enhanced but distorted. Here we experimentally show that nonlinear signal components that distort the terahertz electric field measurement can be removed by subtracting traces recorded with opposite optical bias values. In all three methods tested, we observe up to an order of magnitude increase in distortion-free signal enhancement, in agreement with the theory, making possible measurements of small terahertz-induced transient birefringence signals with increased signal-to-noise ratio.

© 2014 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(040.2235) Detectors : Far infrared or terahertz
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: January 16, 2014
Manuscript Accepted: March 1, 2014
Published: April 8, 2014

Jeremy A. Johnson, Fabian D. J. Brunner, Sebastian Grübel, Andrés Ferrer, Steven L. Johnson, and Thomas Feurer, "Distortion-free enhancement of terahertz signals measured by electro-optic sampling. II. Experiment," J. Opt. Soc. Am. B 31, 1035-1040 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Wu and X.-C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996). [CrossRef]
  2. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997). [CrossRef]
  3. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001). [CrossRef]
  4. N. C. J. van der Valk, T. Wecnkebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004). [CrossRef]
  5. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985), Vol. V, Chap. 2, p. 21.
  6. Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, “Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP,” J. Phys. D 22, 682–686 (1989). [CrossRef]
  7. R. Torre, Time-Resolved Spectropscopy in Complex Liquids: An Experimental Perspective (Springer, 2007).
  8. C. A. Gautier, J. C. Loulergue, and J. Etchpare, “Homodyne and heterodyne impulsive Raman Kerr nonlinearities in crystal: application to E-symmetry polariton modes in PbTiO3,” Solid State Commun. 100, 133–136 (1996).
  9. D. McMorrow and W. T. Lotshaw, “Intermolecular dynamics in acetonitrile probed with femtosecond Fourier transform Raman spectroscopy,” J. Phys. Chem. 95, 10395–10406 (1991). [CrossRef]
  10. F. D. J. Brunner, J. A. Johnson, S. Grübel, A. Ferrer, S. L. Johnson, and T. Feurer, “Distortion-free enhancement of terahertz signals measured by electro-optic sampling. I. Theory,” J. Opt. Soc. Am. B 31, 904–910 (2014).
  11. F. D. J. Brunner, O.-P. Kwon, S.-J. Kwon, M. Jazbinšek, A. Schneider, and P. Günter, “A hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection,” Opt. Express 16, 16496–16508 (2008). [CrossRef]
  12. C. Ruchert, C. Vicario, and C. P. Hauri, “Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1,” Opt. Lett. 37, 899–901 (2012). [CrossRef]
  13. C. A. Werley, S. M. Teo, and K. A. Nelson, “Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card,” Rev. Sci. Instrum. 82, 123108 (2011). [CrossRef]
  14. N. H. Matlis, G. R. Plateau, J. van Tilborg, and W. P. Leemans, “Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation,” J. Opt. Soc. Am. B 28, 23–27 (2011). [CrossRef]
  15. Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, “Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror,” Appl. Phys. Lett. 103, 051103 (2013). [CrossRef]
  16. Y. Yan and K. A. Nelson, “Impulsive stimulated light scattering. I. General theory,” J. Chem. Phys. 87, 6240–6256 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited