OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1046–1053

Hyperfine Paschen–Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment

A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1046-1053 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001046


View Full Text Article

Enhanced HTML    Acrobat PDF (1319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simple and efficient λ-method and λ/2-method (λ is the resonant wavelength of laser radiation) based on a nanometric-thickness cell filled with rubidium (Rb) are implemented to study the splitting of hyperfine transitions of an Rb85 and Rb87D1 line in an external magnetic field in the range of B=0.50.7T. It is experimentally demonstrated from 20 (12) Zeeman transitions allowed at low B-field in Rb85 (Rb87) spectra in the case of σ+ polarized laser radiation, only 6 (4) remain at B>0.5T, caused by decoupling of the total electronic momentum J and the nuclear spin momentum I (hyperfine Paschen–Back regime). The expressions derived in the frame of completely uncoupled basis (J,mJ;I,mI) describe the experimental results extremely well for Rb85 transitions at B>0.6T (that is a manifestation of hyperfine Paschen–Back regime). A remarkable result is that the calculations based on the eigenstates of the coupled (F,mF) basis, which adequately describe the system for a low magnetic field, also predict reduction of the number of transition components from 20 to 6 for Rb85 and from 12 to 4 for Rb87 spectrum at B>0.5T. Also, the Zeeman transition frequency shifts, frequency intervals between the components and their slope versus B, are in agreement with the experiment.

© 2014 Optical Society of America

OCIS Codes
(020.2930) Atomic and molecular physics : Hyperfine structure
(020.7490) Atomic and molecular physics : Zeeman effect
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: December 6, 2013
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 13, 2014
Published: April 9, 2014

Citation
A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, and M. Auzinsh, "Hyperfine Paschen–Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment," J. Opt. Soc. Am. B 31, 1046-1053 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1046


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Keaveney, A. Sargsyan, U. Krohn, D. Sarkisyan, I. G. Hughes, and C. S. Adams, “Cooperative Lamb shift in an atomic vapor layer of nanometer thickness,” Phys. Rev. Lett. 108, 173601 (2012). [CrossRef]
  2. J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, and C. S. Adams, “Maximal refraction and superluminal propagation in a gaseous nanolayer,” Phys. Rev. Lett. 109, 233001 (2012). [CrossRef]
  3. M. Fichet, G. Dutier, A. Yarovitsky, P. Todorov, I. Hamdi, I. Maurin, S. Saltiel, D. Sarkisyan, M.-P. Gorza, D. Bloch, and M. Ducloy, “Exploring the van der Waals atom-surface attraction in the nanometric range,” Europhys. Lett. 77, 54001 (2007). [CrossRef]
  4. P. Tremblay, A. Michaud, M. Levesque, S. Thériault, M. Breton, J. Beaubien, and N. Cyr, “Absorption profiles of alkali-metal D lines in the presence of a static magnetic field,” Phys. Rev. A 42, 2766 (1990). [CrossRef]
  5. E. B. Aleksandrov, M. P. Chaika, and G. I. Khvostenko, Interference of Atomic States (Springer, 1993).
  6. D. Sarkisyan, A. Papoyan, T. Varzhapetyan, K. Blushs, and M. Auzinsh, “Fluorescence of rubidium in a submicrometer vapor cell: spectral resolution of atomic transitions between Zeeman sublevels in a moderate magnetic field,” J. Opt. Soc. Am. B 22, 88–95 (2005). [CrossRef]
  7. B. A. Olsen, B. Patton, Y.-Y. Jau, and W. Happer, “Optical pumping and spectroscopy of Cs vapor at high magnetic field,” Phys. Rev. A 84, 063410 (2011). [CrossRef]
  8. M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford University, 2010).
  9. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, Ch. S. Adams, and I. G. Hughes, “Absolute absorption and dispersion of a rubidium vapour in the hyperfine Paschen–Back regime,” J. Phys. B 45, 215005 (2012).
  10. A. Sargsyan, G. Hakhumyan, A. Papoyan, D. Sarkisyan, A. Atvars, and M. Auzinsh, “A novel approach to quantitative spectroscopy of atoms in a magnetic field and applications based on an atomic vapor cell with L = λ,” Appl. Phys. Lett. 93, 021119 (2008). [CrossRef]
  11. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, and D. Sarkisyan, “Hyperfine Paschen–Back regime realized in Rb nanocell,” Opt. Lett. 37, 1379–1381 (2012). [CrossRef]
  12. D. A. Steck, Rubidium 85 D linedata, http://steck.us/alkalidata/rubidium85numbers.pdf .
  13. D. A. Steck, Rubidium 87 D line data, http://steck.us/alkalidata/rubidium87numbers.pdf .
  14. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3mj Symbols (World Scientific, 1988).
  15. D. Sarkisyan, D. Bloch, A. Papoyan, and M. Ducloy, “Sub-Doppler spectroscopy by sub-micron thin Cs vapour layer,” Opt. Commun. 200, 201–208 (2001). [CrossRef]
  16. A. Sargsyan, Y. Pashayan-Leroy, C. Leroy, R. Mirzoyan, A. Papoyan, and D. Sarkisyan, “High contrast D 1 line electromagnetically induced transparency in nanometric-thin rubidium vapor cell,” Appl. Phys. B 105, 767–774 (2011). [CrossRef]
  17. D. Sarkisyan, T. Varzhapetyan, A. Sarkisyan, Yu. Malakyan, A. Papoyan, A. Lezama, D. Bloch, and M. Ducloy, “Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques,” Phys. Rev. A 69, 065802 (2004). [CrossRef]
  18. C. Andreeva, S. Cartaleva, L. Petrov, S. M. Saltiel, D. Sarkisyan, T. Varzhapetyan, D. Bloch, and M. Ducloy, “Saturation effects in the sub-Doppler spectroscopy of cesium vapor confined in an extremely thin cell,” Phys. Rev. A 76, 013837 (2007). [CrossRef]
  19. G. Dutier, A. Yarovitski, S. Saltiel, A. Papoyan, D. Sarkisyan, D. Bloch, and M. Ducloy, “Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy,” Europhys. Lett. 63, 35–41 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited