OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1054–1061

Optical bistability based on Fano resonances in single- and double-layer nonlinear slab waveguide gratings

Quang Minh Ngo, Khai Q. Le, Dinh Lam Vu, and Van Hoi Pham  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1054-1061 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1069 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we numerically investigate all-optical bistable switching at low input intensity based on Fano resonances available in nonlinear slab waveguide gratings with narrow slits. Fano resonances with various quality factors (Q-factors) in the single- and double-layer slab waveguide gratings are designed and their characteristics are studied by the finite-difference time-domain method. Dependencies on wavelengths of operation, various switching intensities, contrast, and bandwidth of all-optical bistabilities are observed. Comparing nonlinear characteristics of single- and double-layer grating configurations, the latter provides more bistable efficiency with the low input intensities needed and high contrast with high Q-factors at certain operating wavelengths. Both grating configurations in this work provide interesting venues for highly efficient Fano resonance-based all-optical bistable switching devices.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.1450) Nonlinear optics : Bistability
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Nonlinear Optics

Original Manuscript: January 23, 2014
Revised Manuscript: March 6, 2014
Manuscript Accepted: March 10, 2014
Published: April 11, 2014

Quang Minh Ngo, Khai Q. Le, Dinh Lam Vu, and Van Hoi Pham, "Optical bistability based on Fano resonances in single- and double-layer nonlinear slab waveguide gratings," J. Opt. Soc. Am. B 31, 1054-1061 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002). [CrossRef]
  3. S. F. Mingaleev, A. E. Miroshnichenko, and Yu. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express 16, 11647–11659 (2008). [CrossRef]
  4. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013). [CrossRef]
  5. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14, 12770–12781 (2006). [CrossRef]
  6. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17, 23459–23467 (2009). [CrossRef]
  7. Q. M. Ngo, K. Q. Le, and V. D. Lam, “Optical bistability based on guided-mode resonances in photonic crystal slabs,” J. Opt. Soc. Am. B 29, 1291–1295 (2012). [CrossRef]
  8. Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013). [CrossRef]
  9. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).
  10. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  11. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14, 369–376 (2006). [CrossRef]
  12. M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38, 2466–2468 (2013). [CrossRef]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  14. L. Chen, Z. Qiang, H. Yang, H. Pang, Z. Ma, and W. Zhou, “Polarization and angular dependent transmissions on transferred nanomembrane Fano filters,” Opt. Express 17, 8396–8406 (2009). [CrossRef]
  15. Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013). [CrossRef]
  16. Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013). [CrossRef]
  17. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Opt. Express 19, 24530–24539 (2011). [CrossRef]
  18. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).
  19. S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539–1562 (2011). [CrossRef]
  20. G. D’Aguanno, D. de Ceglia, N. Mattiucci, and M. J. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011). [CrossRef]
  21. H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010). [CrossRef]
  22. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17, 23544–23555 (2009). [CrossRef]
  23. A. Taflove, Computational Electrodynamics (Artech House, 1995).
  24. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef]
  25. J. M. Laniel, N. Ho, and R. Vallee, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B 22, 437–445 (2005). [CrossRef]
  26. S. Carretero-Palacios, A. Minovich, D. N. Neshev, Yu. S. Kivshar, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Optical switching in metal-slit arrays on nonlinear dielectric substrates,” Opt. Lett. 35, 4211–4213 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited