OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1062–1070

Strong power absorption in a new microstructured holey fiber-based plasmonic sensor

V. A. Popescu, N. N. Puscas, and G. Perrone  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1062-1070 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001062


View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation characteristics in a new microstructured single-core holey fiber-based plasmonic sensor are investigated using a finite element method. The fiber is specifically designed for sensing analytes with small refractive index values, like water solutions. The proposed structure is made by a silica core with a small air hole in the center, surrounded by six air holes placed at the vertices of a hexagon and four or five smaller air holes between some large air holes, and further enclosed by gold and water layers. The presence of the four small holes impedes the resonant interaction (at 0.623 μm) between one of the pair of twofold degenerate core modes with a plasmon mode and introduces two new core modes in resonance with the plasmon modes when the phase matching (at 0.618 μm) or loss matching (at 0.632 μm) conditions are satisfied. The addition of such four small air holes to a previously studied sensor structure produces a stronger transmission loss (1266.8dB/cm) of a core guided mode at the resonant coupling due to efficient interaction with a plasmon mode near the loss matching point in the red part of the visible spectrum (0.632 μm). The advantages of the configuration with five small air holes are a better spectral resolution, a smaller value of the FWHM parameter, a higher value of the signal-to-noise ratio, and a higher amplitude sensitivity. Our sensors are capable of detecting large ranges of refractive indices with accuracy of 1.0×105 refractive index units.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 7, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 6, 2014
Published: April 11, 2014

Citation
V. A. Popescu, N. N. Puscas, and G. Perrone, "Strong power absorption in a new microstructured holey fiber-based plasmonic sensor," J. Opt. Soc. Am. B 31, 1062-1070 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1062

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited