OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1071–1077

Photoelectric response in LiNbO3:Fe versus Fe2+/Fe3+ ratio studied by PILS method

M. Goulkov and Th. Woike  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1071-1077 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001071


View Full Text Article

Enhanced HTML    Acrobat PDF (916 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoelectric response in photorefractive LiNbO3:Fe crystals of different degrees of reduction is studied by means of photoinduced light scattering. Dependence of photovoltaic and diffusion parameters of the electric-charge transport versus the donor/acceptor concentration is determined from the scattering intensity distribution along the crystal polar axis. The contribution of nonequilibrium electric carriers is discussed. It is shown that the effective temperature of photoexcited electrons is nonlinearly dependent on the donor concentration.

© 2014 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(160.3730) Materials : Lithium niobate
(160.5320) Materials : Photorefractive materials

ToC Category:
Materials

History
Original Manuscript: January 24, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 14, 2014
Published: April 11, 2014

Citation
M. Goulkov and Th. Woike, "Photoelectric response in LiNbO3:Fe versus Fe2+/Fe3+ ratio studied by PILS method," J. Opt. Soc. Am. B 31, 1071-1077 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1071


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Photorefractive Materials and Their Applications 1,2, P. Guenter and J.-P. Huignard, eds. (Springer, 2007).
  2. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391–407 (1997). [CrossRef]
  3. V. G. Brovkovich and B. I. Sturman, “Observation of nonequilibrium diffusion in LiNbO3 crystals,” Sov. Phys. JETP 37, 550–553 (1983).
  4. V. L. Vozniy, V. V. Lemeshko, V. V. Obukhovskiy, and A. V. Stoyanov, “Asymmetry of the photoinduced light scattering in LiNbO3:Fe crystal,” Ukr. J. Phys. 34, 652–657 (1989).
  5. M. Goulkov, M. Imlau, and Th. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008). [CrossRef]
  6. A. Crumins, Z. Chen, and T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995). [CrossRef]
  7. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave-mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999). [CrossRef]
  8. M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Kraetzig, C. Baeumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65, 195111 (2002). [CrossRef]
  9. M. Imlau, M. Goulkov, M. Fally, and Th. Woike, Polar Oxides: Properties, Characterization and Imaging (Wiley-VCH Weinheim, 2005).
  10. W. Philips, J. J. Amodei, and D. L. Staebler, “Optical and holographic storage properties of transition metal doped lithium niobate,” RCA Rev. 33, 94–109 (1972).
  11. I. N. Kiseleva, V. V. Obukhovskii, and S. G. Odoulov, “Parametric scattering of the holographic type in class 3m crystals,” Sov. Phys. Solid State 28, 1673–1676 (1986).
  12. R. A. Rupp and W. Dress, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39, 223–229 (1986). [CrossRef]
  13. B. Sturman, S. Odoulov, and M. Goulkov, “Parametric four-wave processes in photorefractive materials,” Phys. Rep. 275, 197–254 (1996). [CrossRef]
  14. V. Voronov, I. Dorosh, Yu. Kuz’minov, and N. Tkachenko, “Photoinduced light scattering in cerium-doped barium strontium niobate crystals,” Sov. J. Quantum Electron. 10, 1346–1349 (1980). [CrossRef]
  15. L. F. Kanaev, V. K. Malinovsky, and B. I. Sturman, “Investigation of photoinduced scattering in LiNbO3 crystals,” Opt. Commun. 34, 95–100 (1980). [CrossRef]
  16. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982). [CrossRef]
  17. G. Montemezzani, A. A. Zozulya, L. Czaia, D. Z. Anderson, M. Zgonik, and P. Guenter, “Origin of the lobe structure in photorefractive beam fanning,” Phys. Rev. A 52, 1791–1794 (1995). [CrossRef]
  18. F. Jermann and K. Buse, “Light-induced thermal gratings in LiNbO3:Fe,” Appl. Phys. B 59, 437–443 (1994). [CrossRef]
  19. A. Syuy, N. Sidorov, A. Gaponov, M. Palatnikov, and V. Efremenko, “Determination of photoelectric fields in a lithium niobate crystal by parameters of indicatrix of photoinduced scattered radiation,” Optik. B 124, 5259–5261 (2013).
  20. H. Kurz, E. Kraetzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Raeuber, “Photorefractive centers in LiNbO3, studied by optical-, Moessbauer- and EPR-methods,” Appl. Phys. 12, 355–368 (1977). [CrossRef]
  21. E. Kraetzig and H. Kurz, “Photorefractive and photovoltaic effects in doped LiNbO3,” Opt. Acta 24, 475–482 (1977). [CrossRef]
  22. E. Kraetzig and H. Kurz, “Spectroscopic investigation of photovoltaic effects in doped LiNbO3,” J. Electrochem. Soc. 124, 105–108 (1977).
  23. L. Solymar, D. J. Web, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Calderon, 1996).
  24. G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, and Q. Sun, “Noise amplification mechanism in LiNbO3:Fe crystal sheets,” J. Opt. Soc. Am. B 14, 2823–2830 (1997). [CrossRef]
  25. S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997–999 (1994). [CrossRef]
  26. G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, and X. Zhang, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M=Mg, Zn, In) crystals,” J. Appl. Phys. 83, 4392–4396 (1998). [CrossRef]
  27. W. Yan, X. Shen, L. Shi, F. Jia, H. Qiao, H. Chen, G. Chen, Y. Lu, Sh. Zhang, and A. Lin, “Suppression of the photoinduced light scattering in LiNbO3:Fe by redox treatment and incoherent homogeneous illumination,” Appl. Phys. A 108, 615–620 (2012). [CrossRef]
  28. B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, 1992).
  29. R. Gerson, J. F. Kirchhoff, L. E. Haliburton, and D. A. Bryan, “Photoconductivity parameters in lithium niobate,” J. Appl. Phys. 60, 3553–3557 (1986). [CrossRef]
  30. A. P. Levanyuk, A. R. Pogosyan, and E. M. Uyukin, “Anomalously high Hall photocurrents in lithium niobate crystals,” Sov. Phys. Dokl. 26, 43–44 (1981).
  31. R. Sommerfeldt, L. Holtman, and E. Kraetzig, “The light-induced charge transport in LiNbO3:Mg, Fe crystals,” Ferroelectrics 92, 219–225 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited