OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1078–1086

Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling

Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino  »View Author Affiliations


JOSA B, Vol. 31, Issue 5, pp. 1078-1086 (2014)
http://dx.doi.org/10.1364/JOSAB.31.001078


View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ the generalized Lorentz–Lorenz method to investigate how both magnetoelectric coupling and spatial dispersion influence the artificial magnetic capabilities at terahertz frequencies of the representative case of a metamaterial consisting of a three-dimensional (3D) lattice of TiO2 microspheres. The complex wavenumber dispersion relations pertaining to modes supported by the array, traveling along one of the principal axes of the array with electric or magnetic field polarized transversely and longitudinally (with respect to the mode traveling direction), are studied and thoroughly characterized. One mode with transverse polarization is dominant at any given frequency for the analyzed dimensions, proving that the 3D lattice can be treated as a homogeneous medium with defined electromagnetic material parameters. We show, however, that bianisotropy is a direct consequence of magnetoelectric coupling, and the dyadic expressions of both effective and equivalent material parameters are derived. In particular, we analyze the effect of spatial dispersion on the effective parameters relative to a composite material made by a 3D lattice of TiO2 microspheres with filling fraction around 30% and near the first Mie magnetic dipolar resonance. Finally, we homogenize the metamaterial in terms of equivalent index and impedance, and by comparison with full-wave simulations, we explain the presence of the unphysical antiresonance permittivity behavior observed in previous work.

© 2014 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: March 13, 2014
Manuscript Accepted: March 13, 2014
Published: April 11, 2014

Citation
Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino, "Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling," J. Opt. Soc. Am. B 31, 1078-1086 (2014)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-31-5-1078

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited