OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1078–1086

Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling

Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1078-1086 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We employ the generalized Lorentz–Lorenz method to investigate how both magnetoelectric coupling and spatial dispersion influence the artificial magnetic capabilities at terahertz frequencies of the representative case of a metamaterial consisting of a three-dimensional (3D) lattice of TiO2 microspheres. The complex wavenumber dispersion relations pertaining to modes supported by the array, traveling along one of the principal axes of the array with electric or magnetic field polarized transversely and longitudinally (with respect to the mode traveling direction), are studied and thoroughly characterized. One mode with transverse polarization is dominant at any given frequency for the analyzed dimensions, proving that the 3D lattice can be treated as a homogeneous medium with defined electromagnetic material parameters. We show, however, that bianisotropy is a direct consequence of magnetoelectric coupling, and the dyadic expressions of both effective and equivalent material parameters are derived. In particular, we analyze the effect of spatial dispersion on the effective parameters relative to a composite material made by a 3D lattice of TiO2 microspheres with filling fraction around 30% and near the first Mie magnetic dipolar resonance. Finally, we homogenize the metamaterial in terms of equivalent index and impedance, and by comparison with full-wave simulations, we explain the presence of the unphysical antiresonance permittivity behavior observed in previous work.

© 2014 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(260.2065) Physical optics : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 13, 2014
Manuscript Accepted: March 13, 2014
Published: April 11, 2014

Sylvain Lannebère, Salvatore Campione, Ashod Aradian, Matteo Albani, and Filippo Capolino, "Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling," J. Opt. Soc. Am. B 31, 1078-1086 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  2. R. E. Collin, Field Theory of Guided Waves (IEEE, 1991).
  3. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (IET, 1999).
  4. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).
  5. R. Ruppin, “Evaluation of extended Maxwell–Garnett theories,” Opt. Commun. 182, 273–279 (2000). [CrossRef]
  6. M. G. Silveirinha, “Generalized Lorentz–Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007). [CrossRef]
  7. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111 (2007).
  8. C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials 1, 62–80 (2007). [CrossRef]
  9. C. R. Simovski, “Material parameters of metamaterials (a review),” Opt. Spectrosc. 107, 726–753 (2009). [CrossRef]
  10. C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B 405, 2930–2934 (2010). [CrossRef]
  11. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B 84, 075153 (2011). [CrossRef]
  12. S. Campione and F. Capolino, “Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation,” Radio Sci. 47, RS0N06 (2012). [CrossRef]
  13. X. Liu and A. Alu, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B 87, 235136 (2013). [CrossRef]
  14. S. Campione, M. Sinclair, and F. Capolino, “Effective medium representation and complex modes in 3d periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies,” Photon. Nanostr. Fundam. Appl. 11, 423–435 (2013). [CrossRef]
  15. O. Vendik and M. Gashinova, “Artificial double negative (DNG) media composed by two different dielectric sphere lattices embedded in a dielectric matrix,” in 34th European Microwave Conference, Vol. 3 (IEEE, 2005), pp. 1209–1212.
  16. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006). [CrossRef]
  17. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005). [CrossRef]
  18. M. Wheeler, J. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). [CrossRef]
  19. I. Vendik, M. Odit, and D. Kozlov, “3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions,” Metamaterials 3, 140–147 (2009). [CrossRef]
  20. S. Lannebre, “Étude théorique de métamatériaux formés de particules diélectriques résonantes dans la gamme submillimétrique: magnétisme artificiel et indice de réfraction négatif,” Ph.D. thesis (Université Bordeaux, 2011).
  21. K. Berdel, J. Rivas, P. Bolivar, P. de Maagt, and H. Kurz, “Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies,” IEEE Trans. Microw. Theor. Tech. 53, 1266–1271 (2005). [CrossRef]
  22. N. Matsumoto, T. Hosokura, K. Kageyama, H. Takagi, Y. Sakabe, and M. Hangyo, “Analysis of dielectric response of TiO2 in terahertz frequency region by general harmonic oscillator model,” Jpn. J. Appl. Phys. 47, 7725–7728 (2008). [CrossRef]
  23. S. Campione, S. Lannebère, A. Aradian, M. Albani, and F. Capolino, “Complex modes and artificial magnetism in three-dimensional periodic arrays of titanium dioxide microspheres at millimeter waves,” J. Opt. Soc. Am. B 29, 1697–1706 (2012). [CrossRef]
  24. S. Steshenko and F. Capolino, Metamaterials Handbook: Applications of Metamaterials (CRC, 2009), Chap. 8.
  25. G. Mulholland, C. Bohren, and K. Fuller, “Light scattering by agglomerates—coupled electric and magnetic dipole method,” Langmuir 10, 2533–2546 (1994). [CrossRef]
  26. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  27. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  28. S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3d periodic arrays of plasmonic nanospheres,” Opt. Express 19, 26027–26043 (2011). [CrossRef]
  29. G. Lovat, P. Burghignoli, and R. Araneo, “Efficient evaluation of the 3-D periodic Green’s function through the Ewald method,” IEEE Trans. Microw. Theor. Tech. 56, 2069–2075 (2008). [CrossRef]
  30. I. Stevanovic and J. Mosig, “Periodic Green’s function for skewed 3-D lattices using the Ewald transformation,” Microw. Opt. Technol. Lett. 49, 1353–1357 (2007). [CrossRef]
  31. A. Alù and N. Engheta, “Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers,” J. Appl. Phys. 97, 094310 (2005). [CrossRef]
  32. J. A. Kong, Electromagnetic Wave Theory (Wiley-Interscience, 1990).
  33. I. V. Lindell, A. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).
  34. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007). [CrossRef]
  35. R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 1. Theory,” Radio Sci. 47, RS2014 (2012).
  36. R. A. Shore and A. D. Yaghjian, “Complex waves on periodic arrays of lossy and lossless permeable spheres: 2. Numerical results,” Radio Sci. 47, RS2015 (2012).
  37. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102 (2011). [CrossRef]
  38. P. Alitalo, A. Culhaoglu, C. Simovski, and S. Tretyakov, “Experimental study of anti-resonant behavior of material parameters in periodic and aperiodic composite materials,” J. Appl. Phys. 113, 224903 (2013). [CrossRef]
  39. R. Marqus, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002). [CrossRef]
  40. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  41. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  42. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E 68, 065602 (2003). [CrossRef]
  43. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited