OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1096–1102

Graphene ribbons for tunable coupling with plasmonic subwavelength cavities

Gilles Rosolen and Bjorn Maes  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1096-1102 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2545 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Since graphene supports low loss plasmonic guided modes in the infrared range, we theoretically investigate the coupling of these modes in patterned sheets with nanocavities. We calculate cavity modes and (potentially critical) coupling in filter-type circuits, with resonances observed as multiple minima in the reflection spectrum. The origin and properties of the cavity modes are fully modeled by coupled mode theory, exploring for various positions of the cavity with respect to the access waveguide. A useful resonance frequency shift is examined by modifying the graphene doping (e.g., via voltage tuning). The deep subwavelength cavity modes reach quality factors up to 42 for ribbons of 30 nm width around 5 μm wavelength. These resonances provide opportunities for ultracompact optoelectronic circuits.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 7, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 18, 2014
Published: April 16, 2014

Gilles Rosolen and Bjorn Maes, "Graphene ribbons for tunable coupling with plasmonic subwavelength cavities," J. Opt. Soc. Am. B 31, 1096-1102 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhu, M. Chen, Q. He, L. Shao, S. Wei, and Z. Guo, “An overview of the engineered graphene nanostructures and nanocomposites,” RSC Adv. 3, 22790–22824 (2013).
  2. D. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23, 1482–1513 (2011). [CrossRef]
  3. Y. Yang, A. M. Asiri, Z. Tang, D. Du, and Y. Lin, “Graphene based materials for biomedical applications,” Mater. Today 16(10), 365–373 (2013). [CrossRef]
  4. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef]
  5. F. Bonaccorso, Z. Sun, and A. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics 4, 611–622 (2010). [CrossRef]
  6. G. Jo, M. Choe, S. Lee, W. Park, Y. Kahng, and T. Lee, “The application of graphene as electrodes in electrical and optical devices,” Nanotechnology 23, 112001 (2012). [CrossRef]
  7. P.-Y. Chen, J. Soric, and A. Alù, “Invisibility and cloaking based on scattering cancellation,” Adv. Opt. Mater. 24, OP281–OP304 (2012).
  8. A. N. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012). [CrossRef]
  9. P. Avouris and M. Freitag, “Graphene photonics, plasmonics, and optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 20, 6000112 (2014). [CrossRef]
  10. Q. Bao and K. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012). [CrossRef]
  11. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  12. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008). [CrossRef]
  13. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2012). [CrossRef]
  14. X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21, 3486–3491 (2013). [CrossRef]
  15. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012). [CrossRef]
  16. H. Lizuka and S. Fan, “Deep subwavelength plasmonic waveguide switch in double graphene layer structure,” Appl. Phys. Lett. 103, 233107 (2013). [CrossRef]
  17. W. B. Lu, W. Zhu, H. J. Xu, Z. H. Ni, Z. G. Dong, and T. J. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express 21, 10475–10482 (2013).
  18. L. Falkovsky and A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007). [CrossRef]
  19. L. Falkovsky, “Optical properties of graphene,” J. Phys. 129, 012004 (2008). [CrossRef]
  20. D. Efetov and P. Kim, “Controlling electron-phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 265805 (2010).
  21. V. Kravets, A. N. Grigorenko, R. Nair, P. Blake, S. Anissimova, K. Novoselov, and A. Geim, “Spectroscopic ellipsometry of graphene and an excitation-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010). [CrossRef]
  22. G. Pirruccio, L. Moreno, G. Lozano, and J. Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7, 4810–4817 (2013). [CrossRef]
  23. S. Fan, W. Suh, and J. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).
  25. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  26. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795–808 (2010). [CrossRef]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited