OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1109–1117

Analytical approach to the design of microring resonators for nonlinear four-wave mixing applications

T. Hansson, D. Modotto, and S. Wabnitz  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 1109-1117 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical approach for obtaining linear and nonlinear design parameters of microresonators is presented. The eigenmode/eigenfrequency problem of planar resonators is considered in detail, with an analytical closed-form approximation derived for resonators possessing a large radius to width ratio. The analysis permits the resonant frequencies and mode profiles to be determined together with the dispersion properties. The dependence of the effective nonlinear Kerr coefficient on the mode volume is further considered, and also the waveguide coupling together with estimates of the Q-value. Examples, which are in good agreement with numerical simulations, are presented for silicon resonators. The approach can be used for designing planar microring resonators for nonlinear four-wave mixing applications, such as optical Kerr frequency comb generation.

© 2014 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(230.7405) Optical devices : Wavelength conversion devices
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: January 23, 2014
Revised Manuscript: March 23, 2014
Manuscript Accepted: March 23, 2014
Published: April 18, 2014

T. Hansson, D. Modotto, and S. Wabnitz, "Analytical approach to the design of microring resonators for nonlinear four-wave mixing applications," J. Opt. Soc. Am. B 31, 1109-1117 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007). [CrossRef]
  2. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5, 770–776 (2011). [CrossRef]
  3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012). [CrossRef]
  4. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000). [CrossRef]
  5. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef]
  6. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett. 36, 3398–3400 (2011). [CrossRef]
  7. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From classical four-wave mixing to parametric fluorescence in silicon microring resonators,” Opt. Lett. 37, 3807–3809 (2012). [CrossRef]
  8. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012). [CrossRef]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]
  10. M. Hossein-Zadeh and K. J. Vahala, “Free ultra-high-Q microtoroid: a tool for designing photonic devices,” Opt. Express 15, 166–175 (2007). [CrossRef]
  11. H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. K. Chembo, and L. Larger, “Magnesium fluoride whispering gallery mode disk-resonators for microwave photonics applications,” IEEE Photon. Technol. Lett. 22, 1629–1631 (2010).
  12. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D. X. Xu, B. E. Little, S. Chu, and D. J. Moss, “Low power four-wave mixing in an integrated, micro-ring resonator with Q = 1.2 million,” Opt. Express 17, 14098–14103 (2009). [CrossRef]
  13. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si–SiO2 microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).
  14. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100  GHz repetition rates,” Opt. Lett. 37, 875–877 (2012). [CrossRef]
  15. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5  μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013). [CrossRef]
  16. T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013). [CrossRef]
  17. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
  18. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12, 33–39, (2006).
  19. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  20. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998). [CrossRef]
  21. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
  22. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters—a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004). [CrossRef]
  23. S. J. Emelett and R. Soref, “Design and simulation of silicon microring optical routing switches,” J. Lightwave Technol. 23, 1800–1807 (2005). [CrossRef]
  24. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett. 36, 2845–2847 (2011). [CrossRef]
  25. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model,” Opt. Lett. 38, 37–39 (2013). [CrossRef]
  26. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005). [CrossRef]
  27. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010). [CrossRef]
  28. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004). [CrossRef]
  29. E. A. J. Marcatili, “Bends in optical dielectric guides,” AT&T Tech. J. 48, 2103–2132 (1969).
  30. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed., (Academic, 2006).
  31. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).
  32. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35, 1866–1868, (2010). [CrossRef]
  33. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007).
  34. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5, 16–23 (1987). [CrossRef]
  35. M. Kuznetsov, “Expressions for the coupling coefficient of a rectangular-waveguide directional coupler,” Opt. Lett. 8, 499–501 (1983). [CrossRef]
  36. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced backscattering in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited